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ABSTRACT

Internet of Things (IoT) services are gaining increasing popularity,
and IoT devices are widely deployed at many smart homes. Among
all the IoT communication protocols, Zigbee is a dominant one used
by billions of devices and customers. However, the design of Zigbee
has not been carefully evaluated and could be exploited by attack-
ers. In this paper, we focus on Zigbee’s network rejoin procedure,
which aims to allow devices to automatically recover their network
status when they accidentally go offline. We develop an automated
verification tool VEREJOIN to perform a systematic study on the
rejoin procedure. Using this tool, we not only confirm a well-known
design flaw, but also reveal two undiscovered design flaws. More-
over, we construct four proof-of-concept (PoC) attacks to exploit
these design flaws. These vulnerabilities create new attack surfaces
for attackers to manipulate Zigbee devices, and the damage of these
vulnerabilities ranges from denial of service to device hijacking.
We further design a Zigbee testing tool ZIGHOMER to confirm these
vulnerabilities in real-world devices. Using ZIGHOMER, we conduct
thorough evaluations of off-the-shelf Zigbee devices from leading
IoT vendors, and the evaluation result shows the prevalence and
severity of these vulnerabilities. Finally, we reported our findings
to related parties, and they all acknowledged the significant secu-
rity impact. We further collaborate with Zigbee Alliance to amend
the Zigbee specification, and successfully addressed our reported
vulnerabilities.
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1 INTRODUCTION

Smart homes are prevalent under the rapid growth of the Internet
of Things (IoT). IoT devices such as smart hubs, locks, and sensors
are widely deployed at smart homes. These devices are usually con-
nected to a wireless network to provide various services. For such
wireless networks, the communication protocol is critical because
it specifies how devices maintain their network connections and
exchange data. Any protocol vulnerabilities can cause unexpected
behavior of these devices, and attackers can exploit these vulnerabil-
ities to cause serious damage [38]. Zigbee is one of the most popular
IoT communication protocols due to its low power consumption,
high scalability, and efficiency [8]. Reports state that more than 3.8
billion Zigbee devices will be sold worldwide by 2023 [9]. Briefly
speaking, Zigbee specifies various network procedures for devices
to establish and recover their network connections. While these
procedures greatly ease device management and control, few inves-
tigations evaluate their security guarantees. In this work, we focus
on Zigbee’s network rejoin procedure, which specifies how offline
devices recover their network status and re-enable their functional-
ities automatically. Specifically, we find that Zigbee specifies a trust
center rejoin procedure, which sacrifices authenticity to achieve
easy device management. Such an insecure-by-design procedure
usually appeals to the attackers, for they may exploit the vulnera-
bility of the procedure to sabotage numerous IoT devices. However,
to the best of our knowledge, there are no formal investigations
studying the security guarantee of the rejoin procedure. As a result,
a comprehensive security evaluation of Zigbee’s rejoin procedure
is necessary. In this paper, we aim to initiate the first systematic
security study on the network rejoin procedure.

Model checking for Zigbee. Analyzing the Zigbee protocol and
the rejoin procedure is a difficult task, and we need to address the
following challenges. (1) Protocol Complexity: The protocol specifies
various device attributes (e.g., the device type) and diverse types of
messages. As a result, multiple Zigbee devices can be intertwined
together, which exponentially increases the size of the state space.
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(2) Security Properties: The protocol specification usually states
security properties in an abstract and implicit way [30]. As attackers
can exploit Zigbee’s design flaws to sabotage real-world devices,
it is necessary to precisely identify and validate critical security
properties which guard normal device behaviors.

In order to address the above challenges, we decide to use the
model checking technique [19]. Compared with other techniques
which study the procedure’s security guarantees (e.g., fuzzing [54]),
the model checking involves comprehensive protocol modeling and
a formal definition of the security properties. Moreover, it involves a
systematic exploration of the possible states of a procedure. As a re-
sult, it is well-suited to find intricate errors lurking in the procedure
design [42], and it has been widely used to validate security prop-
erties of communication protocols (e.g., the 5G protocol [14, 30]).
Specifically, we first model the rejoin procedure with respect to
an adversarial environment as a finite-state machine (FSM). The
adversary follows the Dolev-Yao attacker model [22], which ran-
domly omits, drops, or injects Zigbee messages while respecting
certain well-formedness conditions (e.g., the encryption). Then we
identify a set of security properties in the technical specification
which are critical to devices’ normal functionalities, and formalize
them. Finally, we design a security checking tool VEREJOIN, which
can automatically generate the state model of the device’s rejoin
procedure, and check whether the security properties hold (Sec-
tion 3). The outputs of VEREJOIN are counterexamples. Specifically,
these counterexamples are state transition sequences of the state
machine which cause violations of the security properties.
Security risks. By inspecting the root causes of these counterex-
amples, we confirm a well-known design flaw and reveal two undis-
covered Zigbee’s design flaws. (1) The rejoin procedure allows
unsolicited devices to deplete Zigbee network resources. (2) Un-
solicited devices can exploit the rejoin procedure to modify the
property information of legitimate devices. (3) We confirm that the
transmission of the network key, which is used for securing Zigbee
communications, is weakly protected. To show how attackers ex-
ploit these flaws, we further construct four proof-of-concept (PoC)
attacks which (1) prevent legitimate Zigbee devices from joining
the network, (2) force legitimate Zigbee devices to go offline and
disable their functionalities, (3) hijack legitimate Zigbee devices
and transfer the control to the attacker, and (4) hijack the whole
Zigbee network. The damage is significant, ranging from denial of
service (DoS) to device hijacking.

The Zigbee testing tool. In order to verify our reported vulnerabil-
ities and test real-world devices, we further design and implement
Z1GHOMER, a Zigbee testing tool based on the off-the-shelf hardware
radio (Section 5). Specifically, ZIGHOMER provides several funda-
mental functionalities (e.g., the reliable packet injection functionality
to guarantee delivery of packets). Based on these functionalities,
we design a reconnaissance module, which detects existing devices
in the target Zigbee network. ZiGHoMER further allows users to
specify different testing tasks for these detected devices. In par-
ticular, we implement our constructed PoC attacks on ZIGHOMER,
and use it to conduct evaluations of our reported vulnerabilities
on real-world devices. We show that our tool outperforms other
existing Zigbee testing tools.

Impacts. Using ZIGHOMER, we evaluate the impact of our reported
vulnerabilities in terms of prevalence, accessibility, and severity
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(Section 6). Specifically, we find that nearly 72% of certified Zigbee
devices are vulnerable to at least one of our reported vulnerabilities.
In particular, we use ten real-world Zigbee devices from four lead-
ing vendors (e.g., SmartThings and Philips Hue) to confirm these
vulnerabilities. We also show that our reported vulnerabilities are
accessible: Attackers can use off-the-shelf hardware to easily ini-
tiate an attack with little prior knowledge of the target network
(e.g., the security information). We further evaluate the severity
of these reported vulnerabilities. The evaluation result shows that
the number of affected device functionalities (e.g., actuating and
sensing) is significant, and the impacts of these vulnerabilities can
last for hours, or at times, stay permanent. Finally, we show that
user-installed home automation rules can also be affected. Specif-
ically, we use SmartThings automation rules [50] to initiate the
evaluation, and the result shows that 63% of the official rules and
71% of the third-party rules will be disabled if attackers exploit
these vulnerabilities. We here summarize our contributions.

o Systematic study on Zigbee’s network rejoin procedure. We
are the first to give a systematic security study on Zigbee’s net-
work rejoin procedure. Specifically, we develop an automated
checking tool VEREJOIN to perform the security check. Given
the specified security properties, VEREJOIN helps us to confirm
a well-known design flaw and identify two undiscovered flaws
in the rejoin procedure. We also construct four PoC attacks and
successfully initiate them on real-world devices.

o Zigbee testing tool. We design a Zigbee testing tool ZIGHOMER,
which is used to perform protocol testing on real-world IoT de-
vices. It first initiates the reconnaissance test, which detects ex-
isting devices in the target Zigbee network. Then it allows users
to easily specify different testing tasks for these detected devices.
We show that our tool outperforms existing testing tools.

e Comprehensive evaluations and impact analysis. We thor-
oughly evaluate our reported vulnerabilities for real-world de-
vices. Moreover, we study their influences on home automation
rules. Our evaluations show that these vulnerabilities are severe
because property security and human life are under huge threat.
We further collaborate with the Zigbee Alliance to amend the
current and future versions of Zigbee specifications (Section 7).

2 BACKGROUND
2.1 Zigbee Device Properties

Each Zigbee device has two addresses: an extended address and a
short address. The former uniquely identifies a device, whereas the
latter is assigned when the device joins a Zigbee network. Zigbee
specifies three device types: coordinator, router, and end device. An
example Zigbee network is shown in Figure 1.

e End devices (e.g., sensors and switches) are resource-constrained
devices that cannot form a network or accept devices. However,
they can provide diverse functionalities (e.g., sensing and ac-
tuating). Most of them are sleepy end devices. Specifically, they
periodically send the Data Request command to their parents (see
definitions below). Then they temporarily turn on their receivers
to check if there are any messages from parents. Sleepy and non-
sleepy end devices are distinguished by the receiver on when idle
device property, e.g., in Figure 1, the end device with the address
e1 is a sleepy end device, and its property value is 0.
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Figure 1: An example Zigbee network

o The coordinator (e.g., IoT hubs and gateways) is a Zigbee device
that can form a Zigbee network, and each network can have
only one coordinator. It maintains and manages the network.
Specifically, it can accept new end devices, but it has a capacity
property that specifies the maximum number of end devices it can
support. According to the Zigbee specification, the recommended
capacity is fourteen. Moreover, it acts as the trust center and it is
responsible for distributing the network key. Finally, it maintains
a child table that records property information of any connected
end devices, e.g., in Figure 1, the coordinator records the address
and the receiver on when idle value for its child device. The child
table is also used for managing child devices (e.g., determine the
communication pattern according to the receiver on when idle
property).

e Routers (e.g., light bulbs and smart plugs) can not form a net-
work, but it can accept new routers and end devices. It helps the
coordinator to manage end devices. A router also has its capacity
limit and maintains a child table.

Because both coordinators and routers can accept end devices,
we refer to them as “parent devices” in this paper. Note that Zigbee
devices also have diverse application profiles, which specify various
device descriptions and functionalities. Popular profiles include
Zigbee Home Automation (ZHA), Zigbee Smart Energy (ZSE) and
Zigbee Light Link (ZLL). Recently Zigbee 3.0 is proposed, which
unifies these profiles to increase device interoperability. In this
paper, we will refer to devices that do not support Zigbee 3.0 as
legacy devices.

2.2 Network Rejoin Procedure

When an end device accidentally goes offline (e.g., due to a power
outage), it will initiate the rejoin procedure to recover its network
status. Specifically, the procedure contains the following processes.
Active scanning process. The end device first broadcasts a Beacon
Request command to locate any parent devices in the network. Then
each parent device will reply with a Beacon Response command,
which tells the end device whether the parent device still has an
available capacity. After inspecting all the beacon responses, the
end device gets a list of parent devices with available capacity, and
will randomly select one as its parent.

Rejoin process. Once the parent is selected, the end device sends
a Rejoin Request command to the parent, in which its property in-
formation is attached, e.g., the receiver on when idle property value.
Depending on the security level of the request, the rejoin procedure
can be either (1) a secure rejoin procedure (if the request is encrypted
with the network key), or (2) a trust center rejoin procedure (if the
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request is transmitted in plaintext). For the secure rejoin procedure,
the parent first checks the encryption of the request. If it is en-
crypted with the legitimate network key, the parent device accepts
the request and sends an encrypted Rejoin Response command to
the end device. For the trust center rejoin procedure, the parent
first accepts the request, then replies with an unencrypted rejoin
response. The parent further creates an entry in the child table, and
establishes an unauthorized connection with the end device. Note
that the end device remains offline unless the connection becomes
authorized. As a result, the parent needs to initiate an additional
authorization process.

Authorization process. To complete the authorization, the parent
first transmits the network key to the end device. The transmission
of the network key is encrypted with a symmetric link key. After
the end device gets the network key, the authorization process is fin-
ished, and the end device becomes online. There are several ways to
establish the consensus of the link key. Specifically, Zigbee Alliance
specifies a global link key for all Zigbee devices (i.e., the hex code
of "ZigbeeAlliance09"). However, since prior work reveals that the
usage of the global link key is vulnerable [36, 48, 52, 56], Zigbee 3.0
proposes a security enhancement that requires each device to use a
unique installation code key as the link key. Moreover, the link key
should be updated once the device joins the network. Finally, ven-
dors can also specify vendor-specific link keys for their devices (e.g.,
Philips Hue specifies a customized ZLL master key [33]). Note that
the use of the link key is eventually decided by the trust center [5].
Considering the compatibility of legacy devices, many vendors still
support the global link key even for their Zigbee 3.0 devices [4, 6].

3 VEREJOIN

Our goal is to leverage the model checking technique and evaluate
the security guarantees of the rejoin procedure. Specifically, the
model checking involves a formal model of the procedure and a
formal definition of security properties. In this section, we first
introduce the detail of procedure modeling and property specifica-
tion. Then we introduce our security checking tool VEREjOIN, which
automatically generates the procedure model and initiates the prop-
erty checking. Before diving into the details, we first present our
threat model.

3.1 Threat Model and Assumptions

In our threat model, the attacker targets legitimate devices deployed
by homeowners and legitimate networks maintained by these de-
vices. The attacker has no prior knowledge about the network key.
However, one can reasonably assume that the attacker knows the
link key, either because the Zigbee network uses the global link key,
or because the network uses a vendor-specific link key which has
already been exposed (e.g., security analysts extract and release the
Hue’s ZLL master key by reverse engineer [45]). Additionally, the
attacker does not need to physically access the target devices, and
she can use off-the-shelf hardware (e.g., the ATUSB [27]) to interact
with the Zigbee communication channel near the victim’s home.
Specifically, we consider a Dolev-Yao-style attacker [22, 30]: The
attacker can (1) sniff the Zigbee traffic to extract information, (2)
drop or inject any Zigbee message while adhering to cryptographic
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assumptions, and (3) impersonate a legitimate Zigbee device. In par-
ticular, the attacker can send spoofed Zigbee messages and fabricate
phantom devices, which are non-existing devices or fake devices
acting as legitimate devices. For example, the attacker can send
a spoofed rejoin request, which fabricates a phantom offline end
device.

3.2 Modeling Network Rejoin Procedure

We model the rejoin procedure as a transition system that involves
multiple Zigbee devices. Specifically, the rejoin procedure is mod-
eled as a finite-state machine (FSM): M = (A, S, 0,7, s9), where
A is a set of actors, and each actor g; (i > 0) represents a specific
Zigbee device. Moreover, each actor belongs to a specific device
class, i.e., legitimate parent device or legitimate end device. S is a
set of states, and each state s; € S records the data that every actor
holds at time t (e.g., the extended address and the network key). In
particular, sy € 8 is the initial state. O is a set of operations that
actors can take. Each operation can change actors’ data and cause
the state transition of the state machine. 7 : S x O — S is the
transition function that drives the system M to transit from one
state to the next state.

To investigate the security guarantee of the rejoin procedure,

we further introduce the adversary into the model. Specifically, we
expand the supported actor types to include phantom parent and
end devices. Since our threat model considers Dolev-Yao-style ad-
versaries, these phantom devices support the operation of sniffing,
dropping, and injecting Zigbee messages. These phantom devices
randomly decide which operations they will take, such that the
adversary can choose any arbitrary strategy to target legitimate
devices. For each actor, we identify a set of data which are critical
for the rejoin procedure and device functionalities (Appendix A).
Specifically, they are device properties (e.g., the extended address
EA), security information (e.g., the network key NK), and the net-
work status NS. Given the list of data that actors own, we further
give the following definitions.
Def. 1 State: Let P,gl_ denote the data set which actor a; holds at
time ¢. A state s; € S is the union of all the actors’ data, or formally,
st = Ugeq Péi, among which sy is the initiate state. For a specific
datap € Péi, Let Pfli [p] denote the value of p for actor a; at time t.
Def. 2 Operation: An operation o; from actor a; to actor a; at time
t indicates that a; transmits a Zigbee command to a; at time t (We
denote Ty (o;) as the sender and Ry (o) as the receiver respectively),
or a; blocks the message sent from a; at time ¢ — 1.

The formal definition of operations follows the command descrip-
tions in the Zigbee specification and the Dolev-Yao attacker model.
In particular, for the transmission operation, we formulate four mes-
sage types (Appendix A). For example, the operation beaconRequest
from a; to aj implies that a; sends a Beacon Request command to
aj, which changes a;’s network status Py, [NS]. Note that some op-
erations may have several subtypes. For example, the rejoinRequest
operation has two subtypes, which represent the transmission of
encrypted and unencrypted rejoin requests respectively. Given a
set of actors and operations, actors may perform their operations
in various orders, and we define the execution path as follows.
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Def. 3 Execution Path: An execution path is an ordered sequence
of states Vg = (so, $1, ..., Sm) With an ordered sequence of operations
Vo = (09,01, ..., 0Om—1), such that Vi € {0,...,m — 1}, 7 (s, 0;) = sit1.
Note that a real-world Zigbee network usually has multiple IoT
devices. An execution path describes a possible execution sequence
for these devices to initiate the rejoin procedure.

3.3 Defining Security Properties

The set of security goals that we aim to check includes integrity (e.g.,
preventing phantom devices from tampering with legitimate de-
vices’ properties), confidentiality (e.g., the protection of the network
key), and availability (e.g., the prevention of the denial-of-service
attack). Specifically, we first identify critical security properties
from the current technical specification [8] and the vendor’s secu-
rity instruction [1-3]. For instance, according to the specification,
the parent device shall look up and update the entries of its child table
when it receives Zigbee packets from a specific extended address. We
therefore identify the child table as a critical device property, and
validate its integrity by specifying an integrity property against the
phantom device. Note that our specified security properties are cate-
gorized into safety and liveness properties [35, 43]. Informally, safety
properties stipulate “something bad should never happen”, whereas
liveness properties require that “something good will eventually
happen”. We further adopt assertions as well as LTL formulas [25]
to express these properties. Both are widely supported by popular
model checking tools such as Spin [28] and nuXmv [15].

Def. 4 Integrity Property: For each legitimate device, its device
property data (Table 4) can not be altered by an operation which
involves phantom devices. Specifically, let Pha(a;) = False denote
that g; is a legitimate device. Vt,Va; whose Pha(a;) = False, and
Vp € P,, which is the device property data of a;, we express the
integrity property as the following assertion

assert(—=(Pha(Ty(oz)) V Pha(Rx(04))) V

((Pha(Ty(0r)) V Pha(Rx(01))) A (PG, [p] = Pt [p])),
where A, V, and - are logical and, or, and negation operators re-
spectively. At each time point, the assertion first checks actors who
will send and receive the Zigbee command in operation o;. If both
are legitimate devices, then the integrity property holds. If any of
them is a phantom device, then the assertion further checks that all
legitimate device property data are not modified by the operation.
Def. 5 Confidentiality Property: In a Zigbee network, the secu-
rity information (i.e., the network key) of legitimate devices should
be the same and can not be manipulated by phantom devices. Also,
the network key of phantom devices can not be the same as the
one that legitimate devices own. Let k; and kp, (k; # kp) be the
legitimate and phantom network keys respectively, Ya;, we have

[1((Pha(ai) A Pa;[NK] = kp) V ((=Pha(a;) A Pq;[NK] = k;))),

where [] is the global operator used in LTL formulas, and NK
represents the network key. For an LTL formula []¢ where ¢ is a
logical function, it means that ¢ should always hold at each state.
For example, [](—Pha(a;) A Pq;[NK] = k;) means that no matter
how the system state changes, a; is always a legitimate device
which owns the legitimate network key.

Note that the confidentiality property is usually defined as a
hyper-LTL property [49]. However, considering our settings, it is
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Figure 2: The overview of Verejoin

sufficient to use LTL formulas to specify the confidentiality property.
Specifically, hyper-LTL is usually used to validate potential flows of
secrets in a system. However, for the rejoin procedure, the flow of
the network key is obvious: The key can only flow from the parent
device to the end device, and the end device cannot propagate the
key anymore. As a result, it is sufficient to only check whether
the network key is properly propagated to the end device (i.e., the
destination of the transmission), and we achieve this by checking
the end device’s state using LTL formulas.

Def. 6 Availability Property: Each legitimate end device should
eventually be connected to a legitimate parent device and get its
network status online. Moreover, since the child table is used for
managing child devices, the parent device should maintain correct
records in the child table for connected end devices. Specifically,
for any legitimate end device a;, there is a legitimate parent device
aj, such that

<> ((P4;INS] = Online) A (P, [PA] = Pg, [EA])A
(Pa; [CT][Pg, [EA]] = Pg, [RO])),

where <> is the finally operator in LTL, and NS, PA, EA, CT, RO
represent the network status, parent address, extended address, child
table, and receiver-on-when-idle property respectively. For an LTL
formula <> ¢ where ¢ is a logical function, the formula requires
that ¢ should eventually hold at some future states. Specifically,
the availability property checks whether (1) the network status
of a; is eventually online, (2) the address of a;’s parent belongs
to a legitimate parent device, and (3) the parent table contains
the record of the child device. In particular, since the child table
records the connected end device’s address and its RO value, the
availability property checks whether the end device’s record (index
by its address) is properly created and maintained.

3.4 Designing Security Checking Tool

Given the above definition of the model and security properties,
we here present the design and implementation of our security
checking tool VEREJOIN, which automates the model generation
and property checking. VEREJOIN has two core components: the
model generator and the model checker, as outlined in Figure 2. The
generator takes the user-specified configuration file and pre-defined
operations as inputs, and outputs a state machine model for the
rejoin procedure. In the configuration file, users configure a list
of actors (e.g., their device types), and specify the initial state sg
for the model. Note that we also provide a default configuration
file, in which both legitimate and phantom end devices are initially
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offline. Given the configuration file and the operation template,
the generator outputs a state machine model, which describes the
states of all actors and their supported operations. Note that the
model is specified using the Promela language [39], which can be
checked by the model checking tool Spin [28].

We further implement a model checker, which takes the gener-
ated model and specified security properties (Section 3.3) as inputs.
For each security property, the checker first uses Spin to explore
all possible execution paths. When an operation is performed and
a new state is generated, Spin checks the security property at the
new state. If there is a violation, a trail file is generated which
records the detailed state transition. Such a state transition sequence
that violates the security property is called a counterexample. Our
model checker further translates the counterexample into a human-
readable operation sequence, and generates a flaw report. Finally,
security analysts can check the report to identify the root causes of
these counterexamples.

Example. We illustrate the model checking process by an exam-
ple. Specifically, we use the default configuration file to specify
the initial state, and Figure 3 shows reported execution paths that
violate the confidentiality property and the availability property.
The phantom end device first initiates the trust center rejoin pro-
cedure, which is shown in Step (1) to Step (4). Specifically, in Step
(2), the beaconResponse operation denotes the transmission of the
beacon response, which shows that the parent device still has avail-
able capacity. In Step (3) and Step (4), the trustRejoinRequest and
trustRejoinResponse denote the transmission of the unencrypted
rejoin request and response respectively. Note that the trustRe-
JjoinResponse operation further checks whether the sender and the
receiver own the same link key. If that is the case, the sender will
update the receiver’s network key. Because all actors initially have
the same link key, the phantom device gets the legitimate network
key after the operation. Hence, the confidentiality property is vi-
olated, and VEREJOIN reports the above execution sequence. Step
(5) and Step (6) show that the legitimate end device also tries to
connect to the legitimate parent. However, because the legitimate
parent’s available capacity has been exhausted, it performs the
fullBeaconResponse operation, which tells the end device that it is
not available. Step (7) to Step (10) show that the legitimate device
further initiates the trust center rejoin procedure to connect to
the phantom parent device. Finally, the rejoin is successful, and
the network key of the legitimate end device is replaced with the
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phantom network key in Step (10). Since the above steps violate
the confidentiality property and the availability property, VEREjoIN
also reports the above execution sequence.

3.5 Checking Result

We first initiate the model checking without the assumption of the
well-known link key. Specifically, we enforce the security enhance-
ment of Zigbee 3.0 and each legitimate end device owns a unique
link key, which is unknown to the phantom device. As a result, the
model checker reports execution sequences which show that (1)
phantom devices can consume network resources and prevent end
devices from rejoining the network (violation of the availability
property), and (2) the end device’s record in the child table can be
modified by phantom devices (violation of the integrity and avail-
ability property). Then we initiate the model checking with the link
key assumption. Besides the previously reported sequences, the
checker further reports sequences that violate the confidentiality
property. Specifically, these sequences show that (3) phantom de-
vices can trigger network key transmissions to leak network keys,
and (4) phantom devices can initiate the network key transmission
to replace network keys of legitimate end devices.

We further investigate the root cause of these anomalous ex-
ecution sequences. As a result, we confirm a well-known design
flaw and reveal two undiscovered flaws. Finally, we construct PoC
attacks based on these sequences, and verify them on real-world
devices. In the following section, we will present these design flaws,
constructed PoC attacks, and vendors’ acknowledgments.

4 REJOIN VULNERABILITIES

In this section, we report three critical design flaws in the Zigbee net-
work rejoin procedure, and these flaws break our specified security
properties. Specifically, these flaws are concerned with exploitable
network resources, improper protection of device properties, and
insecure security material transmissions. We further construct four
PoC attacks to exploit these flaws on real-world devices. As a re-
sult, the damage of these attacks ranges from denial of service (e.g.,
triggering online devices to go offline) to device hijacking. All the
experiments presented in this work are done ethically: They are
conducted only with our own devices in a restricted environment,
and we do not put other users or platforms in danger. Finally, we
reported our findings to the Zigbee Alliance and corresponding
vendors, who all acknowledged the seriousness of these vulnerabil-
ities. Note that we have posted our attack demo videos, captured
traffic logs, and alliance responses online for reference [11].

4.1 Exploitable Capacity

Our study discovers that the capacity of parent devices can be ex-
ploited, such that both the integrity and availability properties are
violated. Specifically, due to the support of the trust center rejoin
procedure, the parent device accepts any unencrypted rejoin re-
quest unconditionally. For each requesting end device, the parent
device establishes an unauthorized connection (Section 2.2) and
allocates resources (e.g., the available capacity). As a result, the
operation (i.e., the rejoin request) from the phantom device can suc-
cessfully manipulate the legitimate device’s capacity, which implies
a violation of the availability property. Specifically, when multiple
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Figure 4: Overview of Capacity Exploitation

phantom end devices exhaust the capacity of a legitimate parent
device, other legitimate end devices can not establish connections
with the parent device. As a result, the legitimate end device cannot
reach the online status and work normally.

Even worse, after checking the specification, we find that the pro-

tocol specifies a vulnerable aging-out process for the unauthorized
connection. Specifically, Zigbee specifies a timeout for unautho-
rized connections and requires that the end device reset itself once
the timeout is reached. However, the phantom end device will not
reset itself. Consequently, once the phantom device establishes the
unauthorized connection, the parent device has no choice but to
keep maintaining the connection. Therefore, the consumed capacity
can not be recovered.
PoC attack: Capacity Exploitation. Given the above vulnerabil-
ity, we construct a new Zigbee attack: Capacity Exploitation. Figure 4
shows the attack overview. Specifically, the attacker creates mul-
tiple phantom devices, which send trust center rejoin requests to
the legitimate parent device (the hub) and establish unauthorized
connections with it. Consequently, these phantom devices deplete
the capacity of the hub. Later, when a legitimate smart lock wants
to join the Zigbee network, it cannot establish a connection any-
more because the capacity of the legitimate parent device has been
depleted. The damage of the Capacity Exploitation is threefold. (1)
It causes severe damage to offline and freshly new devices, which
prevents them from joining the network. (2) It consumes the ca-
pacity and computing resources of parent devices for maintaining
those unauthorized connections. (3) It helps the attacker to con-
struct more damaging attacks which trigger online devices to go
offline (Section 4.2) or hijack legitimate devices (Section 4.3).

We initiate the Capacity Exploitation using eight parent devices

from SmartThings, Philips Hue, Xiaomi, and IKEA. The result shows
that the attack can fully compromise the capacity of all tested
devices. Also, our evaluation shows that the attack can be initiated
within seconds, while the influence is persistent. For some victim
parent devices, they can never recover their capacities even users
initiate the factory reset procedure (see Section 6).
Responsible disclosure. We reported this vulnerability to the af-
fected vendors and Zigbee Alliance, which all acknowledged its
seriousness. Specifically, the alliance highlights that we are the
first to reveal the insufficient protection of the device capacity and
the flawed aging-out process. Moreover, device vendors includ-
ing SmartThings and Philips Hue indicate that our findings have
widespread impacts on many manufacturers’ devices.
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4.2 Inconsistent Recognition of Device
Properties

Our study also reveals that the legitimate devices’ records can be
easily tampered with, which violates the integrity and availability
properties. Recall that the parent device maintains a child table
(see Figure 1), in which each entry records property information
of a connected end device (e.g., the address and the receiver on
when idle property). Moreover, the parent device determines how
to interact with its child device based on the recorded property
information. For example, if the recorded receiver on when idle
value of an end device is 0, the parent device will regard the end
device as a sleepy end device. Consequently, the parent will not
actively send messages to the end device. According to the Zigbee
specification, whenever an end device sends a rejoin request, it
should attach its property information in the request. Moreover,
once a parent device receives the request, it updates the sender’s
record according to the attached property information. However, we
find that such an update is done without any checking. Specifically,
a phantom device can pretend to be the victim end device and send
an unencrypted rejoin request with spoofed property information
attached. Consequently, the parent device will update the record
of the victim end devices using the spoofed property information,
which creates inconsistency between the parent and child.

We further discover that the inconsistent recognition of the
receiver on when idle property can cause victim end devices to go of-
fline. Specifically, for a sleepy end device, once its record is modified,
the parent device will mistakenly regard the device as a non-sleepy
end device, and change the communication pattern with it: Instead
of waiting for a data request from the victim device, the parent
device chooses to actively send messages to the victim device, and
hopes to get the corresponding acknowledgment (ACK). Since the
victim device does not turn on its receiver, it will not receive any
message and will not reply with acknowledgment. Consequently,
in the parent device’s perspective, the victim device seems to lose
the message, and the parent will apply a backoff mechanism to
retransmit the message. After several failed attempts, the parent
device treats the victim device as going offline and automatically
disconnects with it. Later, when the victim device sends a data re-
quest to poll messages, it will be informed that it has been removed
and needs to rejoin the network.

The inconsistent recognition of the receiver on when idle property
results in the temporary removal of the victim device from the
network, and attackers can exploit this vulnerability to temporarily
disable the victim device’s functionality. However, when the victim
device notices that it has been removed from the network, it will
immediately initiate the rejoin process to recover its network status.
As a result, the offline status is not persistent. We discover that
combined with Capacity Exploitation (Section 4.1), the victim device
can not recover its network status even if it initiates the rejoin
procedure, and we construct the following Offline Attack.

PoC attack: Offline Attack. The attack flow is shown in Figure 5,
in which the smart lock is a sleepy end device. Specifically, the
attacker first initiates the Capacity Exploitation on the target par-
ent device to exhaust its capacity. As a result, the child table has
been occupied with the record of phantom devices. After that, the
attacker fabricates a phantom end device, which pretends to be the
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Figure 5: Overview of Offline Attack

victim lock by sharing the same extended address with it (we will
introduce how the attacker gets the address of legitimate devices in
Section 5). The phantom device then sends an unencrypted rejoin
request to the parent device, in which the receiver on when idle
property value is set to 1. Consequently, the spoofed request causes
an inconsistency issue and disables the regular communication be-
tween legitimate devices. As a result, the lock is removed from the
network, and its record in the child table is cleared. Note that now
the available capacity of the parent device is not depleted anymore
due to the removal of the lock. Before the lock notices that it has
been removed from the network, the attacker initiates the Capac-
ity Exploitation again to deplete the capacity of the parent device.
Later, when the lock tries to rejoin the network, its request will be
rejected by the parent device since there is no available capacity.
As a result, the lock is stuck in a dangling state: It tries the endless
scanning process to find a suitable parent device. Finally, the lock
cannot perform its functionalities and cannot be opened by the
user.

We initiate the Offline Attack on eight parent devices from Smart-

Things, Philips Hue, Xiaomi, and IKEA. Evaluation results show
that tested devices from these brands are all vulnerable: Any end de-
vices connected to these parent devices suffer from this attack. Note
that this attack disables device functionalities and puts the user’s
smart home in danger. For example, the offline status of the motion
sensor can help the burglar to get rid of the alarm. Consequently,
users’ belongings can be stolen without detection.
Responsible disclosure. We reported this flaw with constructed
attacks to the affected device vendors and the alliance, and they
all acknowledged this problem. They confirm that our reported
attacks can disable numerous functionalities provided by end de-
vices, e.g., sensing, actuating, and displaying. Since the attack can
be combined with the Capacity Exploitation, dangling end devices
can even permanently lose functionalities unless users buy a new
parent device to accept them. Moreover, the alliance highlights
that the manipulation of the device properties by the unauthorized
operation is an undiscovered and severe security issue.

4.3 Support of Well-Known Link Keys

Finally, our study confirms that using the well-known link key
for Zigbee devices is vulnerable, and such a design flaw violates
the confidentiality property. Recall that the link key is used in the
authorization process of the trust center rejoin, and it is used to
encrypt/decrypt the transmission of the network key. Since the
link key is known by the attacker, the network key transmission
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is insecure. In particular, prior work [20, 24, 36, 48, 52, 56] shows
that attackers can passively sniff the network key transmission
and cause the network key leakage. We highlight that although the
vulnerability is well-known, prior work did not construct feasible
attacks to exploit it. Specifically, they only focus on the leakage
of the network key, and their proposed attacks usually require
users’ involvement (e.g., wait for users to join devices). We present
a detailed discussion at Section 8.

By checking the reported execution sequences that violate the

confidentiality property, we construct two PoC attacks that ex-
ploit the link key vulnerability. Attackers can initiate these attacks
without users’ involvement, and we show that the consequence
is twofold. (1) A phantom end device can maliciously trigger le-
gitimate parent devices to transmit the encrypted network key.
Consequently, the attacker can decrypt it with the well-known
link key and cause the network key leakage. (2) A phantom parent
device can maliciously initiate the transmission of the network key
for offline end devices. Consequently, the attacker can transmit a
manipulated network key (encrypted with the link key) and replace
the legitimate network key stored in the end device. One can check
that the former results in the network key leakage, whereas the
latter results in the key manipulation and device hijacking.
PoC attacks: Network Key Leakage Attack and Hijacking At-
tack. Figure 6a shows the overview of the Network Key Leakage
Attack. The attacker first fabricates multiple phantom end devices,
each of which has different device properties. In particular, these
phantom devices include sleepy and non-sleepy end devices, and
their extended addresses are randomly generated. Then these phan-
tom devices send the trust center rejoin request and sniff packets
replied by the parent device. They further decrypt these packets
with the well-known link key. Finally, if the network key is identi-
fied, then the attack succeeds.
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Figure 6: Attacks exploiting the link key vulnerability

Figure 6b shows the overview of the Hijacking Attack. Note
that a prerequisite of initiating the hijacking is that the legitimate
end device should be in the offline status. In order to meet the
prerequisite, the attacker can first initiate our constructed Offline
Attack (Section 4.2) to induce existing end devices to go offline.
As a result, these legitimate end devices go offline and start the
scanning process to find suitable parent devices. Then the attacker
fabricates a phantom parent device, which broadcasts the beacon
response to inform these end devices. The phantom parent device
further sniffs packets sent from these offline end devices. Once a
trust center rejoin request is identified, the phantom device sends
the trust center rejoin response immediately. It further transmits
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a manipulated network key (encrypted with the well-known link
key) to the offline end device. After that, the end device accepts the
manipulated network key and sends a broadcast announcement
encrypted with the manipulated key. From now on, the end device
has been successfully hijacked.

Responsible disclosure. We successfully initiated the attacks on
devices from SmartThings, Philips Hue, and Xiaomi. Then we re-
ported the above flaw and PoC attacks to these affected vendors.
They acknowledged our findings and deployed the corresponding
patches to prevent the attack. We further received a bonus from
the Xiaomi bounty program for our successful initiation of the key
leakage attack.

4.4 Insufficiencies of Zigbee 3.0

In this section, we introduce Zigbee 3.0’s security enhancement of
the trust center rejoin procedure [5, 34], and discuss its insufficien-
cies. Figure 7 shows the enhancement in red fonts. Specifically, the
enhancement mainly targets the link key vulnerability. It requires
each Zigbee 3.0 end device to update the link key when it joins
the network. Later when the end device goes offline and initiates
the trust center rejoin procedure, the trust center enforces an addi-
tional check for the used link key (by the end device) to determine
whether the trust center should transmit the network key to the
end device. Unfortunately, the enhancement cannot mitigate our
discovered vulnerabilities (Section 4.1 and 4.2). The root cause is
that the enhancement only focuses on the authorization process. How-
ever, our discovered vulnerabilities target the rejoin process, which
happens before the authorization process and does not get enhance-
ments. As a result, Capacity Exploitation and Offline Attack are
still applicable to Zigbee 3.0 devices.

Even worse, the link key vulnerability (Section 4.3) can still be
exploited for Zigbee 3.0 devices. The reason is that the enhancement
assumes all devices in the network should be Zigbee 3.0 devices, which
usually does not hold. Specifically, the enhancement (i.e., the update
of the link key) is only possible if both the trust center and the end
device support Zigbee 3.0 [5]. Since there are a large number of
legacy devices deployed at smart homes, the consequence is twofold.
First, when Zigbee 3.0 end devices joins a network formed by legacy
parent devices, they still use the global link key or the leaked vendor-
specific link key. As a result, attackers can initiate Hijacking Attack
to hijack these devices. Second, since legacy end devices do not
support the update of the link key, considering the usability of
these devices, many Zigbee 3.0 parent devices still support the
network key transmission (encrypted with the well-known link
key). For example, the SmartThings hub allows users to enable the
rejoin procedure with the global link key [6]. As another example,
the Silicon Labs’ Zigbee stack (i.e., EmberZnet Pro) also keeps the
option of using well-known link keys [5]. As a result, these parent
devices are still vulnerable to Network Key Leakage Attack.

5 ZIGBEE TESTING TOOL

In this section, we elaborate on the design of our Zigbee testing tool
Z1GHOMER. It is based on ATUSB, an open hardware with the Atmel
transceiver [27]. ZIGHOMER provides fundamental functionalities
such as reliable packet injection. Based on these functionalities, it
can initiate the reconnaissance test, which detects existing devices
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in the target Zigbee network. It further allows users to specify their
testing tasks on these detected devices. Specifically, we implement
our constructed PoC attacks on ZIGHOMER to confirm our reported
vulnerabilities in real-world devices.

5.1 Architecture Overview

Figure 8 shows the overview of ZiGHOMER. It is loaded on the
ATUSB hardware, and communicates with the transceiver through
the serial peripheral interface (SPI). At the bottom, ZicGHOMER lever-
ages the hardware accelerator of the transceiver to provide two
functionalities: sniffing with ACK control and reliable packet injec-
tion. Specifically, the former allows users to sniff Zigbee packets and
configure the automated acknowledgment (ACK) reply, whereas
the latter allows users to inject Zigbee packets with guaranteed
packet delivery. Based on the sniffing and injection functionalities,
Z1GHOMER provides two modules to parse captured Zigbee com-
mand packets (the Packet Parser) and to inject specific command
packets (the Packet Generator) respectively. ZIGHOMER further pro-
vides a Reconnaissance Module, which detects existing devices in
the target Zigbee network and collects their information. The col-
lected device information is stored in the Device Repository. Finally,
Z1GHoMER provides a Testing Module which loads device informa-
tion from the repository and performs specified testing tasks on
existing devices.

In order to provide the sniffing functionality, ZiIGHOMER first
turns on the receiver mode of the transceiver. Later, when a packet
arrives, it reads the packet through the SPI bus. Note that according
to the Zigbee specification, the receiver should further reply with an
acknowledgment to the sender, and there is usually a tight timing
window constraint for the transmission of the acknowledgment.
For instance, a sender that uses the Q-QPSK physical layer will wait
for only 864 microseconds to receive the acknowledgment [13]. To
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transmit the acknowledgment within the time frame, ZIGHOMER
first configures the transceiver to accelerate the generation of the
acknowledgment using its hardware. Then Z1IGHOMER lets users
specify a source address such that whenever a Zigbee packet from
that address arrives, the transceiver will automatically generate
and reply with an acknowledgment.

To provide the reliable injection functionality, ZIGHOMER first
turns on the transmission mode of the transceiver, and passes the
packet to the buffer of the transceiver through the SPI bus. Then
ZicHoMER configures the transceiver to use the CSMA/CA algo-
rithm to avoid the communication channel collision [13]. Specifi-
cally, the transceiver first initiates a clear channel assessment (CCA)
to check the availability of the current channel. If the communi-
cation channel is busy, the transceiver will wait until the channel
becomes idle. Later, when the channel is free, the transceiver will
transmit the packet, and the algorithm guarantees the successful
delivery of packets.

5.2 Packet Parser and Packet Generator

Based on sniffing and injection functionalities, ZIGHOMER can fur-
ther parse captured packets and transmit Zigbee command packets.
Specifically, the Packet Parser is designed for parsing captured
packets. Because ZIGHOMER may not own the network key used in
the target network, the parser can not always capture the packet
in plaintext. However, it can still extract useful information from
captured packets, i.e., device addresses and command types.
Address information. Zigbee specifies that each network com-
mand packet (e.g., the Rejoin Request command) must contain the
extended and short addresses in plaintext. For other command pack-
ets (e.g., the Data Request command), the format of the addressing
filed depends on the specific command type. Therefore, whenever
the parser receives a Zigbee command packet, it will parse and
extract the address information based on the command type. For
each extracted address, the parser further records it in the Device
Repository.

Command types. The parser can also identify the command type
for a captured packet, and the identification allows ZIGHOMER to de-
tect and test existing devices (see Section 5.3). Previous research [7]
proposed a decision tree to identify network command types for en-
crypted packets. Our parser implements the decision tree, and can
further identify command types for unencrypted packets. Specif-
ically, the parser first extracts the command ID from each unen-
crypted packet, then identifies the command type according to the
Zigbee specification. In total, the parser can identify 23 command
types.

The Packet Generator allows users to easily generate Zigbee
command packets. Note that for different command types, packets
may contain different fields (e.g., the receiver on when idle field
in the Rejoin Request command). Therefore, the generator pro-
vides different APIs to generate different command packets. These
APIs also require that users give the address information as inputs.
Specifically, users can specify a non-existing address as the source
address, which fabricates a non-existing phantom device. Users can
also specify an existing address (owned by a legitimate device) as
the source address, which fabricates a phantom device pretending
to be the legitimate device.
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Table 1: Comparisons of Zigbee testing tools

Tool Available | Open Source Sniffing with Reliable | Reconn | Flexible
Hardware Firmware Automatic ACK | Injection | aissance | Testing
KillerBee [53] v B v
Z3sec [41] v
SecBee [56] v
Zigator [7] v v
ZigHomer v v v v v v

o means that it depends on the specific hardware.

5.3 Reconnaissance and Testing Modules

It has been shown that the parser can get and record the address in-
formation of existing devices. For each recorded address, ZIGHOMER
can further detect its device type by using the Reconnaissance Mod-
ule. As a result, ZIGHOMER can learn the overall network topology
at target smart homes. Specifically, the Reconnaissance Module first
identifies each parent device by exploiting the fact that only parent
devices will reply to the Beacon Request command. It first injects a
spoofed Beacon Request command packet, then it collects responses
sent by existing parent devices and extracts their addresses. After
these parent devices are identified, their addresses are labeled as
“parent device”, and the remaining addresses are labeled as “end
device”. To further check which parent device an end device is
connected to, the module injects a spoofed Orphan Notification
command packet. The source address of the spoofed packet is set
to be the end device, and this packet is broadcasted to every parent
device. Because only the true parent of the end device will reply to
this command according to Zigbee specification, the module can
learn the parent relationship by checking which parent devices
reply to the spoofed command. Finally, the module records learned
information about the device type and the network topology in the
repository.

Z1GHOMER also provides an extensible testing module in which
users can specify their own testing tasks. Specifically, users can
specify a group of devices to be tested (according to the device type)
and the interested command type. Then the module fetches related
device information from the repository (e.g., the device address),
and initiates the injection of the specified command to these devices.
The module also allows users to specify a testing routine for these
devices instead of a single command type. ZIGHOMER provides four
routines by default, each of which corresponds to a reported PoC
attack in Section 4. For example, users can execute the routine
of the Capacity Exploitation and specify the parent device as the
target. Consequently, for each parent device in the target Zigbee
network, the module performs the test to check whether the device’s
capacity can be exploited. Note that users can easily extend the
testing module by specifying their testing routines.

6 EVALUATION
6.1 Comparisons of Zigbee Testing Tools

We choose four existing tools to compare with ZIGHOMER, and
the result is listed in Table 1. Specifically, the Available Hardware
feature denotes whether the hardware of the tool is still available
in the market. At the time of this writing, the hardware of SecBee
has been out of date, thus the tool can not be used anymore. The
Open Source Firmware feature denotes whether the hardware of
the tool is open source. Given this feature, users can customize the
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firmware of the hardware. Tools that do not support this feature
(e.g., Z3sec) only provide pre-compiled firmware.

We find that none of the existing tools provide Sniffing with
Automatic ACK and Reliable Injection functionalities. Specifically,
these tools fail to support the automated acknowledgment reply,
which limits their testing capabilities. Lacking this functionality
makes these tools useless when they want to reply to messages
that target devices sent. It is also important to note that these tools
do not guarantee the successful delivery of packets, which reduces
their utilities. We further check whether existing tools support the
Reconnaissance functionality. Unfortunately, none of them support
it. Finally, we focus on the Flexible Testing feature, which allows
users to extend the tool and specify their testing tasks. We show
that only KillerBee and our tool support this feature. One can check
that ZiIcHOMER supports all the features mentioned above. The
comparison highlights that ZIGHOMER outperforms existing tools.

6.2 Evaluations of Vulnerabilities

Prevalence analysis. We use ten off-the-shelf devices from four
dominant Zigbee device vendors (SmartThings, Philips Hue, IKEA,
and Xiaomi) to conduct the evaluation, and Table 2 shows the result.
All tested parent devices are vulnerable to Capacity Exploitation and
Offline Attack. Moreover, SmartThings Hub and Xiaomi Gateway
V2 are vulnerable to the Network Key Leakage Attack. We further
find that the Xiaomi gateway V3 uses a vendor-specific link key
to prohibit key leakage. However, such a solution has been shown
to be insecure: Attackers can get the link key through reverse
engineering of the firmware, and the key leakage attack can still
be initiated. Finally, we show that the dimmer switch of Philips
Hue is vulnerable to the Hijacking Attack. Specifically, when the
switch goes offline, it first initiates the secure rejoin procedure.
After several failed attempts, it initiates the trust center rejoin
procedure and thus can be hijacked. For the multipurpose sensor,
because it does not initiate the trust center rejoin procedure when
it goes offline (due to the vendor’s customization), it is immune to
our hijacking attack.

The evaluation result shows that our attacks can fully compro-
mise the capacity and the network status of existing Zigbee devices.
The vendors and the alliance also confirmed the prevalence of our
reported issues. Specifically, we analyzed 3,188 certified Zigbee
devices’ information in the official product repository [10], and
find that 2,295 of them (71.9%) are vulnerable to at least one of our
reported vulnerabilities. For the remaining 893 devices, since they
run the Zigbee Smart Energy application profile, which does not
support the trust center rejoin procedure by default, we did not
count them as affected devices.

Severity analysis. Table 3 shows the time cost and the persistency
of the impact for Capacity Exploitation Attack. One can check that
it only takes several seconds for attackers to compromise the capac-
ity of affected devices, while it takes hours to recover the capacity.
We further find that for parent devices of Philips Hue, the depletion
of capacity is permanent. For example, after the capacity of a Hue
bridge is depleted, even a firmware update or a factory reset proce-
dure cannot recover its capacity. Note that for the Offline Attack,
the above persistency analysis is also applicable. As we previously
stated, the offline end device cannot perform any functionalities
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Table 2: Evaluation results of real-world devices™

. Capacit Offline Ke Hijackin,
Vendor Device Type Expltp;itati}:)n Attack Leak:ge Iittack ¢

Hub V3 ZC v v v -

SmartThings Plug 7APLZJ3 ZR v v - -

Multipurpose Sensor | ZED - - - X

Bridge V2 ZR - -

Philips Hue Bulb A19 7R % v - -

Dimmer Switch ZED - - - v

Gateway E1526 ZR v/ / -
IKEA Bulb E27 7R v v -
Xiaomi Mijia Gateway V2 ZC v v v
Mijia Gateway V3 | ZC 7 7 X

* The dash symbol means “not applicable”. For example, since Capacity
Exploitation only targets parent devices, it will not affect ZEDs.

Table 3: Persistency analysis for our reported vulnerabilities

Device Capacity C-f)lsl:‘:s) Persistency
SmartThings Hub V3 64 3.72 40 minutes
SmartThings Plug 7APLZ]3 15 0.78 40 minutes
Philips Hue Bridge V2 16 0.85 Over 24 hours
Philips Hue Bulb A19 7 0.28 Over 24 hours
IKEA Gateway E1526 32 1.74 2 hours
IKEA Bulb E27 5 0.17 1 hour
Xiaomi Mijia Gateway V2 36 1.83 50 minutes
Xiaomi Mijia Gateway V3 36 1.78 50 minutes

until affected parent devices have the available capacity to accept
it. This implies that attackers can disable the end device’s function-
alities for hours. We further summarize the affected functionalities
of certified Zigbee end devices, ranging from actuating (e.g., the
remote control and the on/off switch) to sensing (e.g., the motion,
smoke, and contact sensors). The invalidation of these function-
alities may cause damaging losses to smart home residents. For
example, the invalidation of security devices prevents residents
from monitoring and guarding their home status. Finally, the vul-
nerability of the well-known link key allows attackers to hijack
end devices and control Zigbee networks. We upload demo videos
showing the malicious control online [11].

6.3 Perturbations of Home Automation Rules

Our reported vulnerabilities can also disturb the execution of home
automation rules. Nowadays most popular platforms (e.g., Smart-
Things and IFTTT) allow users to design customized automation
rules, and these rules are widely deployed at smart homes or offices.
An example is “FireCOzAlarm” which automatically performs a list
of operations (e.g., opening the door) when the CO; sensor detects
anomalies. In this example, the sensor is the trigger, and the door
is the responding device. While the automation rules bring conve-
nience and smart home users heavily rely on them, the evaluation
result shows that our reported vulnerabilities can disable these
smart rules. Specifically, we choose to use open source automa-
tion rules from SmartThings [50] for our evaluation, and we are
interested in those rules which specify end devices as the trigger
or the responding device. Consequently, a total of 87 official and
36 third-party rules are selected. We further identify four basic
classes of impacts and correspondingly summarize the number of
affected automation rules. The example rules and evaluation results
(Figure 9) are shown in Appendix B for reference.

o Device functionality interference denotes that (1) when the rule is
triggered, the responding devices cannot function because they
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have been disabled; (2) the rule cannot be triggered at all because
the trigger device has been disabled.

o Silent notification denotes that for rules which provide the notifi-
cation capability, disabling trigger devices prevents these rules
from notifying users.

o Web service interference denotes that for rules which are designed
to provide web services, e.g., weather uploading or cross-platform
control services, disabling trigger devices can disable these ser-
vices.

o Mode interference denotes that for rules which can change home
modes, disabling trigger devices can disable the transition of the
home mode, which affects a list of responding devices.

Our result shows that the device functionality interference and the
silent notification are common impacts on automation rules. More-
over, one automation rule may have multiple functionalities so
that they can be affected simultaneously. For example, when the
trigger device or the responding device is affected, 14 official rules
cannot control the responding device or notify the user. Users’
property and lives are in danger if they heavily rely on these au-
tomation rules. Even worse, existing security research for automa-
tion rules [16, 17, 51] are mostly based on the assumption that IoT
devices and the cyber channel are not compromised. Our vulnera-
bilities break this assumption and bypass existing security systems.

7 DISCUSSION AND FUTURE WORK

Lessons learned. One important lesson learned is that protocol
procedures which trade security for utility should be carefully ex-
amined. Note that the issue of insecure procedures is not specific
to Zigbee protocol. They widely exist in other IoT communica-
tion protocols and the functionality implementation of IoT devices.
For example, some devices (e.g., routers and cameras) support cus-
tomized servers to access the device using browsers. However, these
servers usually have weak authentication procedures, which allows
attackers to easily get the root privilege of these devices [32, 37]. We
highlight that model checking technique is powerful for revealing
the underlying vulnerabilities, which involves procedure modeling
and property specification. In our work, we show the potential of
our VEREJOIN for analyzing Zigbee procedures. Another important
lesson is that IoT security systems should be designed in a way
that takes different layers (e.g., the cloud layer and the cyber layer)
into consideration. As a result, when anomalies happen, a security
system that collects evidence from multiple layers can better local-
ize the root causes. For example, when the platform is informed
of the offline state of the CO; sensor and the anomaly of related
automation rules (e.g., the disabled alarm), the collected Zigbee
network rejoin response (recording the PAN FULL state of parent
devices) can help security analysts to identify the root cause of the
anomaly, i.e., Zigbee capacity exploitation and offline attack.
Addressing our reported vulnerabilities. In order to fix our re-
ported vulnerabilities, we collaborate with Zigbee Alliance and
revise the currently released specifications (R21/R22) and the speci-
fication to be released (R23) [12]. We further update our model and
initiate the model checking to verify whether these revisions are
valid. As a result, no counterexamples are reported, which means
that these revisions successfully address our reported vulnerabili-
ties. Descriptions of the revisions are as follows.
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o Improve the aging-out process. The broken aging-out process al-
lows phantom devices to permanently take up the parent device’s
child table. To clean up these phantom devices, the revision re-
quires that if an orphaned device does not send at least one network
encrypted message within apsSecurityTimeOutperiod milliseconds,
it shall be deleted from the child table. Since phantom devices do
not hold the network key and cannot send the encrypted message,
they can only be temporally accepted onto the network.
Strengthen checks of device properties. It has been shown that the
child table can be manipulated by unsolicited devices. Therefore,
the revised specification adds a new subsection which requires
that parent devices initiate strict checks before the table is updated
by the insecure packet. Specifically, the insecure packet must not
overwrite legitimate data in the child table. As a result, the phan-
tom device cannot tamper with legitimate devices’ information
stored in the child table, and cannot create inconsistent issues.
Remove the support of the well-known link key. Since the speci-
fication still supports the global link key, we help the alliance
to comprehensively remove it from the specification, and add
a new section which regulates the rejoin behavior. Specifically,
the parent device should specify a unique link key for each end
device when it joins the network. When the parent device re-
ceives a rejoin request from an end device, it shall first determine
whether the used link key is the global one. If that is the case,
the rejoin should be rejected. Otherwise, the parent device will
transmit the network key encrypted with the unique link key.
The child device with the unique link key shall not accept any
commands (e.g., the key transport command) encrypted with the

default link key.

We further test vendors’ patches to check if they follow the

updated specification. Specifically, for each evaluated device (see
Table 2 on Page 10), we first upgrade its firmware to the latest
version. Then we use ZigHomer to initiate our PoC attacks again.
The result shows that all vendors successfully patched their devices.
(1) All phantom devices are cleaned up within seconds, and the
state of full capacity is eliminated. (2) The spoofed rejoin request
cannot tamper with the child table, and the parent device will not
ask legitimate child devices to leave the network. Finally, (3) the
parent device will not transmit network keys to any devices which
use the well-known link key, and the offline child device will not
accept the transmitted network key which is encrypted with the
well-known link key.
Designing model checking tools. Modeling and verifying real-
world Zigbee systems with diverse actors and operations is com-
plicated. Our tool VEREJOIN makes an attempt and shows its effec-
tiveness. Currently, it focuses on the rejoin procedure and supports
several operation types. Extending the scope of supported opera-
tions/procedures will be our future research. Moreover, Improving
VEREJOIN to support more advanced techniques (e.g., compositional
verification [26, 44]) for analyzing larger numbers of actors is also
a potential direction for future research.

8 RELATED WORK

Link key vulnerability. Security analysts have been aware that
the transmission of network keys (encrypted with well-known link
keys) is not secure. Specifically, prior work [7, 20, 24, 36, 48, 52,

Jincheng Wang, Zhuohua Li, Mingshen Sun, and John C.S. Lui

56] focuses on how to trigger the network key transmission and
cause the network key leakage. [7, 24, 36, 52, 56] target Zigbee’s
join procedure. They show that attackers can trigger network key
transmission by social engineering and jamming attacks, which
induce users to initiate the join procedure and add devices. However,
since these attacks require continuous jamming (e.g., jamming the
endless beacon) and users’ involvement (the join procedure can be
only initiated by users), they are difficult to initiate in the real world.
[20, 48] target Zigbee’s rejoin procedure, and suggest that attackers
can impersonate a legitimate end device to send spoofed rejoin
requests, which trigger the network key transmission. However,
they require attackers to have the legitimate end device’s property
information (e.g., the address) and did not provide instructions on
how to get the information.

Compared with the prior work, our work constructs easily de-
ployable attacks to cause network key leakage. Specifically, our
Network Key Leakage Attack does not require users’ involvement
and any device information, such that attackers can easily initiate
it in the real world. Besides leaking the network key, our work also
extends Zigbee’s attack vector and constructs a new attack (i.e., the
Hijacking Attack) that replaces the legitimate network key.
Attacks on ZigBee. Prior work focuses on the design and imple-
mentation flaws in Zigbee application profiles [40, 41, 47]. Specif-
ically, the implementation of ZLL profiles on Amber devices is
vulnerable, which provides an attack surface for attackers to reset
and hijack the Philips light bulb [47]. Design flaws in ZLL have
also been identified and can be exploited to take control of ZLL-
based lighting systems [40]. Besides the ZLL profile, ZigBee 3.0 is
discovered to be insecure by design, and attackers can exploit the
Touchlink commissioning mechanism specified by Zigbee 3.0 [41].
In contrast to these previous works on design flaws in specific appli-
cation profiles, our study considers the network rejoin procedure,
which is common to all Zigbee devices and is supported by most
application profiles. Furthermore, the impact of our reported vul-
nerabilities ranges from the denial of service to device hijacking,
which is more severe.

Zigbee devices are also vulnerable to jamming attacks [46],
which jams the communication bandwidth and disables devices.
We highlight that our proposed denial-of-service attacks (Capacity
Exploitation and Offline Attack) have less restrictive assumptions
and achieve more damaging consequences. Specifically, our attack
can be initiated within seconds, and the denial of service can last for
hours (even permanently). The jamming attack, however, requires
consistent traffic monitoring and jamming, which is infeasible in
the real world. Moreover, our attacks exploit device properties (e.g.,
the capacity and the child table), while the jamming attack does
not affect device properties.

Model-based vulnerability discovery. Prior work uses fuzzing,
symbolic execution, and formal verification techniques to discover
vulnerabilities in diverse protocols [18, 23, 31, 54, 55]. Specifically,
a model-based approach is proposed to discover vulnerabilities in
TCP congestion control automatically [31], and another approach is
proposed to identify new forms of idle port scan attacks using model
checking techniques [23]. Researchers recently model the delega-
tion process for IoT platforms and confirm several design flaws [55].
In our work, we design a tool VEREJOIN to model and analyze the
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network rejoin procedure in the Zigbee protocol. Consequently,
our tool discovers widespread vulnerabilities in the procedure.
Appified platform security. There are plenty of works focusing
on the security of automation rules [16, 17, 17, 21, 29, 51]. For
example, rule interactions through the physical channels (e.g., tem-
perature) may introduce unexpected behaviors of devices [21]. In-
stalled automation rules can be chained together to bring in new
threats [17, 29, 51]. Our evaluation results and discussions show
that our reported vulnerabilities can also affect these automation
rules. Even worse, existing security systems [16, 17] cannot address
these vulnerabilities.

9 CONCLUSIONS

Zigbee is a dominant IoT communication protocol and the large
number of deployed Zigbee devices highlights the importance of
Zigbee’s security. In this work, we first identify a set of security
properties for IoT devices, then we use the model checking tech-
nique and design a Zigbee security checking tool VEREJOIN. Using
our tool, we successfully report three design flaws and construct
four PoC attacks, which are all acknowledged by Zigbee Alliance
and the affected vendors. We also design a Zigbee testing tool
Z1GHoMER and implement our constructed PoC attacks on it. We
show that ZiIGHOMER outperforms existing tools, and it is also flex-
ible such that users can specify their own testing tasks. Finally, we
use ZIGHOMER to evaluate our reported vulnerabilities in terms of
prevalence and severity. The result shows that our reported vul-
nerabilities can cause huge threats to existing Zigbee devices and
automation rules provided by IoT platforms. Further discussions
highlight the risk of device procedures that trade security for utility,
and the importance of designing comprehensive IoT security sys-
tems. Finally, we collaborate with Zigbee Alliance and successfully
amend the current and future versions of the Zigbee specification.
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A DATA AND OPERATIONS

VEREJOIN specifies a set of data that actors hold according to the
Zigbee specification (Table 4). Note that actors of different types
may have different data. For example, the network status captures
different phases of end devices during the rejoin procedure, and it is
only associated with the end device. Moreover, VEREJOIN supports
four basic types of operations, each of which corresponds to the
transmission of a specific Zigbee command. We construct these

Jincheng Wang, Zhuohua Li, Mingshen Sun, and John C.S. Lui

operations based on the command description in the Zigbee spec-
ification, and implement them using the Promela language. Note
that one basic type of operation may have a few sub-types (See
Section 3). We here use the abbreviated name of device properties
(see Table 4) for a better illustration, and provide the definition of
these operations as follows.

beaconRequest. An end device a; can send a Beacon Request com-
mand to a parent device a;. The operation beaconRequest(a;, a;)
is defined as:

Check(Pg, [NS] == “Orphan”)
Notice(a;, aj, BEACON-REQUEST)
P4, [NS] = “Beacon Sent”

Note that the Check(p) primitive, where p is a logical function, will
check whether p is true. If p holds, actors can proceed with the
operation; otherwise actors have to abandon this operation. The
Notice(a;, aj, cmd) primitive, where cmd is a command id, denotes
that a; informs a; of a command message with id equal to cmd.
beaconResponse: A parent device a; sends a Beacon Response
command to an end device a;. Depending on whether a; has an
available capacity, this operation has two sub-types. Formally, when
a; has an available capacity, the operation beaconResponse(a;, a;)
as:

Check(Received(a;, aj, BEACON-REQUEST))
Check(Pq,; [CA] > 0)

P, [NS] = “Rejoin Ready”

Pq, [PA] = Py, [EA]

Note that the Received(a;, aj, cmd) primitive is a logical function
which denotes whether a; has been informed by a; about a com-
mand message with id equal to cmd.

The operation fullBeaconResponse(aj, a;) is also defined as fol-
lows when the capacity has been depleted.

Check(Received(a;, aj, BEACON-REQUEST))
Check(Pq,; [CA] ==0)
Pg,[NS] = “Orphan”

rejoinRequest: An end device a; sends a Rejoin Request command
to a parent device a;. Depending on the security level of the request,
this operation has two sub-types. Formally, when the request is
encrypted using the network key (secure rejoin procedure), the
operation rejoinRequest(aj, aj) is defined as:

Check(Pq, [NK] == P, [NK])
Check(Pg, [NS] == “Rejoin Ready”)
Notice(a;, aj, REJOIN-REQUEST1)
P4, [NS] = “Rejoin Sent”

When the request is in plaintext (trust center rejoin procedure),
the operation trustRejoinRequest(a;, aj) is defined as:

Check(Pg, [LK] == P4, [LK])
Check(Pg4, [NS] == “Rejoin Ready”)
Notice(a;, aj, REJOIN-REQUEST2)
P4, [NS] = “Rejoin Sent”
rejoinResponse: A parent device ag; sends a Rejoin Response com-

mand to an end device a;. Depending on the security level of the
response, this operation has two sub-types. Formally, if the response
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Table 4: The list of data that actors hold

Actor Type Data Name (Abbrev) Data Type Descriptions
Device Class (DC) A The type and legitimacy of the device
Commons Extended Address (EA) P The extended address of the device
Link Key (LK) S The stored link key
Network Key (NK) S The stored network key
Receiver On When Idle (RO) P The receiver on when idle property
End device Network Status (NS) N The network status of the end device
Parent Address (PA) P The address of the connected parent device.
. Capacity (CA) P The available capacity to accommodate end devices
Parent device - - -
Child Table (CT) P A table of data copies for connected end devices

In the “Data Type” column, (P, N, A, S) represents (device property, network status, auxiliary data, security information) respectively.

is encrypted using the network key (secure rejoin procedure), the
operation rejoinResponse(a;, aj) is defined as:

Check(Received(a;, a;, REJOIN-REQUEST1))
“Online”, P, [CA] > 0
Pa NS = | nline . a; [CA]
Orphan”, P;,[CA] =0
P, [CA] -1,P;[CA] >0
o [CA] = | ParlCAT = 1 Pa [CA]
0, P4, [CA] =0
Update(Pg, [CT], Pq,; [EA], P, [RO])

Note that the Update(CT,EA’, RO’) primitive is designed for the
update of the child table CT, in which each entry is in the form
of (EA, RO). Specifically, if the address EA’ is already in CT, this
primitive will update the RO value of the corresponding entry using
RO’; otherwise this primitive will create a new entry (EA’, RO’)
and store it into CT.

When the response is in plaintext (trust center rejoin procedure),
the operation trustRejoinResponse2(a;, aj) is defined as:

Check(Received(a;, aj, REJOIN-REQUEST2))
“Online”, P;,[CA] > 0
Pa NS = | nline . a; [CA]
Orphan”, P;,[CA] =0
P, [CA] - 1,P,, [CA] >0
po [cA] = |Par[CA = 1P [CA]
0,P4,[CA] =0
Update(Pg, [CT]aPaj [EA],Paj [RO])
Pa, [NK] = P, [NK]

Additional notes. We need to point out that some of the above
formalisms may not strictly follow the command description in the
Zigbee specification. Specifically, we highlight the following two
adjustments we made as follows.

e According to the Zigbee specification, the Beacon Request com-
mand is transmitted in a broadcast mode. However, we model
it as a unicast command because Promela does not provide cor-
responding grammar support. To comply with the specification,
we require that when an end device is going to send the Beacon
Request command, it will send the command to all parent devices.

e According to the Zigbee specification, the unencrypted Rejoin
Response command does not transmit the network key, but the
Zigbee command Key Transport command is responsible for
the key transmission. Because the Key Transport command al-
ways follows by the unencrypted Rejoin Response command, we
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Figure 9: Affected functionalities of automation rules

merged the functionality of these two commands, and give the
formalism of the trustRejoinResponse operation.

B EXAMPLES OF AFFECTED AUTOMATION
RULES

We list four example rules which are affected by our reported attacks
in Table 5. Specifically, each of these rules is from the SmartThings’
official or third-party repository. All these examples are classic
rules because each of them performs a specific basic functionality
as introduced in Section 6.3. Here, we introduce their functionalities
and details of the impact on these rules. The result implies that if
users heavily rely on these automation rules, our reported attacks
can cause significant threats.
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Table 5: Examples of affected Smart Apps

App Name Class Functionalities Descriptions of Impacts
Cameras On The camera will be turned on The invalidation of presence sensors
, a . . .
When I'm Away when no one is at home. prevents the detection of persons, and freezes the camera operations.
Get a push notification or text message when The invalidation of flood sensors prevents users from

Flood Alert b . . . o L .

water is detected where it does not belong. getting notifications about potential floods.

Weather Underground c Sense local temperature/humidity and The invalidation of temperature/humidity sensors
PWS Connect upload the data to the weather station. results in the upload of meaningless data.
) . The invalidation of moti
Good Night d Changes mode when motion ceases. ¢ mvandation ot motion sensors
prevents the home mode from transitions.

In the “Class” column, (a, b, ¢, d) represents (Device functionality interference, Silent notification, Web service interference, Mode interference)
respectively (See Section 6.3).
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