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Abstract—Differential Privacy (DP) is well-known for its strong
privacy guarantee. Briefly speaking, DP algorithms guarantee
that the statistical information of the data is roughly preserved,
and at the same time, individual privacy is protected with
guarantees. However, when there are correlations among the
attribute in the dataset, only relying on DP is not sufficient
to defend against the attribute linkage attack, which is a well-
known privacy attack aiming at deducing individuals’ private
information. In the attribute linkage attack, the adversary can
leverage prior knowledge about the victim, combined with
accessing the published dataset, to infer sensitive information
about a victim. In this paper, we study the attribute linkage
attack in DP settings, and argue that enhancing DP can give
users a higher level of privacy guarantees. Our contributions are
1 we show that the attribute linkage attack can be initiated with

high probability under the protection of DP, 2 we propose a
variant of DP called APL-Free ε-DP to provide a higher level of
privacy guarantees, 3 we design an algorithm APLKiller which
satisfies the APL-Free ε-DP. Finally, experiments show that our
algorithm not only eliminates the attribute linkage attack, and at
the same time, it has a better ability to extract useful information
from the data.

Index Terms—Differential privacy; Attribute linkage attack;
Set-valued dataset; Topology theory; APLKiller.

I. INTRODUCTION

In the current digital era, personal information has become
valuable. Using these data, companies can provide personal-
ized recommendations by understanding users’ behavior and
devise better advertising strategies to improve recommendation
models. These personal data range from names, shopping pref-
erences, health records, etc., and these data are continuously
being collected by companies or internet service providers via
various channels. In the meantime, because data collection is
becoming ubiquitous, privacy becomes a serious concern. For
instance, there have been severe privacy breaches in recent
years [1], [2] which compromised user privacy.

Industry and academia have put in significant effort on
how to protect personal privacy. One method is to anonymize
the data before publishing them to the public [3], [4]. Un-
fortunately, individuals’ private information could still be
leaked [5], [6]. One of the most damaging privacy attacks
is the attribute linkage attack [7]. In this attack, the attacker
can leverage part of attribute information to deduce more
information about the victim.

Recently, differential privacy (DP) was proposed [8], and
researchers have proposed various DP algorithms. Briefly
speaking, a DP algorithm adds random noise to the dataset
to preserve user privacy. Currently, companies like Google [9]
and Uber [10] are using DP algorithms to enhance their data
services and to protect user privacy. DP algorithms can be
categorized in two different settings: non-interactive DP and
interactive DP. The former is for publishing datasets to the
public, while the latter is for responding to users’ queries to
a dataset, e.g., a query can be: “how many participants in the
dataset are male?”.

Despite its strong privacy guarantees, DP is not without any
pitfalls. For example, how to determine the privacy budget ε
is a non-trivial issue that requires rich experience from data
publishers [11]. A high value of ε will result in a low degree
of privacy but a high degree of data utility, that is, the ability
to extract useful information from the data. So how to set a
proper value for ε is known as the utility-privacy dilemma.
Also, correlations among records, e.g., social relationships,
can degrade the privacy guarantee of DP [12], [13], [14],
[15]. In this paper, we show that DP-processed datasets are
prone to the attribute linkage attack when attributes in the
original dataset are correlated. Such attribute correlations will
introduce attribute linkage vulnerability with high probability.

Table I is an example to illustrate the attribute linkage
attack. Specifically, Table I(a) is a retail dataset D in which
each record contains a unique itemset with the number of
its occurrence, i.e., the number of customers who bought
the corresponding itemset. Note that in Table I(a), there
exists correlations among items. For example, statistically
most customers who bought {toothpaste, scissor, hanger}
would like to buy beer. The consequence of having such
a correlation is that all itemsets which contain {toothpaste,
scissor, hanger} have zero occurrence, except for the itemset
{beer, toothpaste, scissor, hanger} with 20 occurrence. Given
the above correlation in the dataset, adversaries can initiate the
attribute linkage attack. For simplicity, we will use “Eve” to
represent the adversary and “Alice” to represent the victim. If
Eve knows that Alice bought the itemset {toothpaste, scissor,
hanger} in advance and accesses the dataset D, she can
search for all records which contain these three items, and
finally uniquely identify the first record in Table I(a). The
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ID Itemset Occurrences
1 beer, toothpaste, scissor, hanger 20
2 beer, toothpaste 4
3 beer 1
4 beer, toothpaste, scissor 12
5 scissor, hanger 3

(a) An example of retail dataset D

ID Itemset Occurrences
1 beer, toothpaste, scissor, hanger 23
2 beer, toothpaste 2
3 beer, toothpaste, scissor 8
4 scissor, hanger 5
5 toothpaste 2

(b) A possible DP processed dataset Dp

TABLE I: Examples of a retail dataset D and its perturbed version Dp using differential privacy

consequence is that Eve can deduce that Alice also bought
beer, which is private information for Alice. Since Eve can use
the itemset {toothpaste, scissor,hanger} as prior knowledge
to uniquely identify a record, we call this itemset an attribute
privacy leakage (APL), and a formal definition will be given in
Section IV. Specifically, Eve can initiate the attribute linkage
attack by linking the APL with a unique record in D, which
eventually causes Alice’s private information leakage.

To provide privacy protection, the data publisher may use
DP algorithms to perturb the dataset D and output the DP-
processed dataset Dp. For example, a classical DP algorithm
for histogram data is presented [8]: For each itemset in the
itemset universe, a random positive/negative Laplace noise is
added to the number of its occurrence to compute the perturbed
number of its occurrence. Any itemset with a non-positive
perturbed number of occurrences will not be added to Dp. As
a result, for an itemset S, if the number of its actual occurrence
is low, the probability for S to be added to Dp will be low.
Table I(b) shows a possible DP-processed dataset Dp. Because
of the noise introduced by the DP algorithm, the number of
occurrences of itemsets has been modified. For example, the
itemset {beer} exists in D, but it does not exist in Dp because
of the negative Laplace noise.

Unfortunately, in our example, one can check that the APL
is not eliminated in the DP-processed dataset Dp. Specifically,
the itemset {toothpaste, scissor, hanger} is not only an APL
in D, but also an APL in Dp. The consequence is that Eve
can uniquely identify Alice’s record in Dp, and deduce that
Alice bought beer. In this work, we highlight that there is
a high probability that the existence of an APL in D will
be well preserved in Dp, which allows the attribute linkage
attack in DP settings. The root cause is that the existence
of an APL in the dataset depends on the underlying item
correlation, which DP algorithms try their best to preserve for
data utility. As a result, DP algorithms preserve the correlation
for the data utility, and at the same time, preserve the existence
of APLs. In our example, the underlying correlation in D
between {toothpaste, scissor, hanger} and beer guarantees
that the occurrence of {beer, toothpaste, scissor, hanger} is
large, while any other itemset which contains {toothpaste,
scissor, hanger} is zero. Such a correlation is well preserved
in Dp as well as the existence of the APL {toothpaste, scissor,
hanger}.

In order to eliminate the APLs and defend against the
attribute linkage attack in DP settings, we argue that enhancing
DP can strengthen users’ privacy, and propose the APL-Free
ε-DP, which addresses the APL issue in DP settings. Fur-

thermore, we design an algorithm, APLKiller, which aims to
publish datasets and, at the same time, satisfies the APL-Free
ε-DP. Experimental results show that our algorithm APLKiller
guarantees user privacy and also provides high data utility. In
summary, our contributions are:
• We show that applying traditional DP algorithms to real-

world datasets can create possibilities of the attribute link-
age attack on the DP-processed dataset. Specifically, an
adversary can deduce the private information of victims
with a high probability in DP settings.

• To eliminate APLs and defend against the attribute link-
age attack, we propose the APL-Free ε-DP. We show
that an algorithm which satisfies APL-Free ε-DP can
guarantee that no attribute linkage attack will be initiated
on the processed dataset.

• We design a novel algorithm, APLKiller, which is based
on a topology-theoretic approach [16] to defend against
the attribute linkage attack in DP settings. It has O(mn)
time complexity, where m is the number of records in the
dataset, and n is the number of items in the item universe.
Furthermore, our algorithm preserves the data utility
when processing the dataset. Evaluation results show that
the privacy guarantee of APLKiller is better than that of
the traditional DP algorithm. Moreover, evaluation results
show that the data utility of APLKiller is higher than that
of the traditional DP algorithm.

The rest of this paper is organized as follows: In Section
II, we review correlation issues in DP, the attribute linkage
attack and current work of privacy protection using topology
theory. In Section III, we present some preliminaries. In
Section IV, we give an illustration and analysis of the attribute
linkage attack in DP settings. In order to defend against
the attribute linkage attack, we propose the APL-Free ε-DP
and the algorithm APLKiller in Section V, with experiment
evaluations in Section VI. Finally in Section VII, we conclude
our work.

II. BACKGROUND

In this section, we first provide the background information
of DP. Then we give an overview of the attribute linkage
attack. Finally, we discuss how topology theory [17] helps
to defend against the attribute linkage attack. Note that we
here list descriptions of commonly used symbols throughout
this paper for reference, as shown in Table II.

A. Correlation Issues in Differential Privacy
The main idea of standard DP is that by adding or deleting

one record from the dataset, it will have a negligible impact

2



Symbol Descriptions

I The item universe. Specifically, let n be the size of the universe,
and Ik ∈ I (k ∈ {1, ..., n}) is the kth item in I.

S
An itemset which consists of several items, i.e., S ⊆ I.
Specifically, |S.items| is the number of items in S, and
|S| is the number of occurrences of S in the dataset.

BS
The boundary set for the itemset S (See Definition 1).

Specifically, each element in BS is called a “boundary itemset”.
Q An APL in a dataset (See Definition 4).

D
A set-valued dataset which is in the form of {(S, |S|)}.

Specifically, DI is the set of itemsets in D.
Dp The DP-processed dataset of the original dataset D.

Di
A subset of the dataset D which contains all i-itemset records

in D, i.e., the set of records which contain itemsets of size i for i > 0.
ε The privacy budget parameter used for DP algorithms.

TABLE II: A table of definitions for commonly used symbols.

on the query results. Therefore, it can hide evidence of an
individual in the dataset. DP was initially used for interactive
settings in which the user submits a query on the dataset,
for example, “how many people visit google.com in the web
log?”, and the user will get the corresponding answer with
some added noise to increase privacy. However, it is reported
that only a limited number of queries can be answered and
the flexibility of performing personalized data analysis tasks
is constrained under this setting [18], [19]. Non-interactive DP,
which aims to sanitize the publication of the whole datasets,
becomes an alternative. It is essential in many situations like
publishing medical or census data. Specialized non-interactive
DP algorithms were designed for low dimensional data pub-
lishing [20], [21], [22], [23], as well as for high-dimensional
data release [24], [25], [26], [27].

Although standard DP is elegant, there are still usability and
privacy leakage issues. For example, how to set the privacy
parameter ε is not easy to decide [11]. Attacks targeting
DP systems have also been reported [28]. One of the most
serious issues is that correlations among records can decrease
privacy guarantees of DP [12], [13], [14], [15]. Specifically,
the victim’s private information can be encoded in the social
correlation, which is formed by a specific group of partici-
pants, e.g., friends or families. Once such underlying social
correlations are discovered, the victim’s private information is
under leakage.

Our paper points out that the victim’s private information
can also be encoded in the item correlation, which is formed
by all participants. The item correlation can create APLs and
allows the attacker to initiate the attribute linkage attack in the
original dataset. Even worse, DP algorithms cannot correctly
handle these APLs, and these APLs are preserved in the DP-
processed dataset with high probability. The consequence is
that even though DP algorithms are applied to increase privacy,
the attacker can still initiate the attribute linkage attack and
cause privacy leakage. Compared with the social correlation
issue in DP, we highlight that the item correlation issue is
more general and severe for the following reasons.

1) It is easier for attackers to discover the item correlation
in data than the social correlation.

2) By leveraging item correlations, the attacker can easily
construct the attribute linkage attack to leak the private
information.

3) It is harder for data publishers to defend against the
attribute linkage attack because the underlying item
correlation is formed by all participants instead of a
small group.

Note that we focus on the non-interactive DP setting in
most parts of this paper because of its broad applicability and
flexibility. Also, it is much more intuitive and clear to use
the non-interactive DP setting to show the attribute linkage
attack. In addition, many papers focus on counting queries
since counting is a fundamental task in data mining. So we
also focus on counting queries and their derivatives.

B. Attribute Linkage Attack

The attribute linkage attack is one of the most damaging
privacy leakage attacks [29]. The attacking philosophy is to use
the combination of non-private attributes, e.g., zip-code and
birthday, to uniquely identify the victim’s record and deduce
values of private attributes, e.g., the medical information of an
individual. This attack can happen because an adversary can
take advantage of specific attribute correlations in the dataset,
which create APLs. Once the adversary identifies these APLs,
by accessing the dataset, the adversary can deduce the victim’s
private information, e.g., the victim’s medical information.

In a set-valued dataset, each item in the dataset can be
viewed as a binary attribute. In Section I, we have provided
an example to give an intuition of the attribute linkage attack
on a set-valued dataset. Previous investigations [6], [15], [5],
[30] have shown some real-world cases of the attribute linkage
attack on set-valued datasets. One can check that the attribute
linkage attack can be easily initiated in the real world. For
example, in [30], authors show that one can uniquely identify
a movie subscriber’s record in the IMDb dataset by only
using part of his/her movie rating histories. Specifically, only
two rating histories with dates can uniquely identify 68%
of subscribers’ records. Once the identification is successful,
deducing more ratings of a subscriber is then possible. Note
that it is usually challenging to distinguish beforehand which
items are private and which are non-private. Therefore, treat-
ing each item as equally private is necessary to provide a
strong privacy guarantee, while it increases the complexity of
designing privacy-preserving algorithms.

Various anonymization standards have been proposed for
publishing datasets while defending against the attribute link-
age attack. They are usually based on the generalization
techniques [31], [32]. The main criticisms of such techniques
are that they are easy to attack, and data generalization
sharply decreases data utility [33], [8]. Although DP provides
a much stronger privacy guarantee than those anonymization
standards, little research has focused on the attribute linkage
attack in DP settings. In this paper, we argue that DP is still
not immune to the attribute linkage attack. The attribute corre-
lation will enlarge the possibility of the attribute linkage attack
in DP settings. In order to defend against the attribute linkage
attack, we here introduce a topology-theoretic approach.
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ID
Item beer toothpaste scissor hanger

1 • • • •
2 • •
3 • • •
4 • •
5 •

TABLE III: Relation R for the dataset Dp in Table I(b)

ID / Item beer toothpaste scissor hanger
1 • •
2 • • •
3 • •
4 •

TABLE IV: Relation Rq on {beer, toothpaste, scissor, hanger}

C. Topology of Privacy

Recently security researchers presented a formalism to study
privacy using topology theory [17]. Specifically, they first
model a dataset D as a relation R : X × Y , in which
X represents a set of records in D, and Y represents the
item universe, e.g., all kinds of commodities in a shop. For
example, one can transform the DP-processed dataset Dp in
Table I(b) into a relation R as shown in Table III. Suppose one
wants to determine whether an attribute linkage attack can be
initiated on a record r which contains the itemset S = {beer,
toothpaste, scissor, hanger}, the first step is to project R in
Table III onto a sub-relation Rq : X ′ × S, in which X ′ is the
set of records containing at least one item in S. Table IV is an
example. Then we can use topology theory to prove that there
will be a possibility of an attribute linkage attack targeting the
itemset S if and only if any element in the boundary set BS
is missing in Rq .
Definition 1 (Boundary Set): The boundary set BS of an
itemset S is generated by removing each item from S. That
is,

BS = {S′ ⊂ S : |S.items| − |S′.items| = 1},

where |S.items| is the size of S, and each element S′ ∈ BS
is called a boundary itemset.

Note that given |S.items| = n, the number of boundary
itemsets in BS is also n. For example, the boundary set BS
of the itemset S = {beer, toothpaste, scissor, hanger} contains
the following four boundary itemsets: {toothpaste, scissor,
hanger}, {beer, scissor, hanger}, {beer, toothpaste, hanger},
and {beer, toothpaste, scissor}. The above result implies that
any missing boundary itemset S′ is an APL, and can be used
as the prior knowledge to uniquely identify the target’s itemset
S. Moreover, S−S′ is the leaked information. Referencing to
our example, since the boundary itemset {toothpaste, scissor,
hanger} is missing in Table IV, Eve can deduce that Alice
also bought beer.

Let DI be the set of itemsets in D. We can further use
topology theory to prove that if there is no missing boundary
itemset for each maximal itemset in DI , then there will be no
attribute linkage attack targeting records in D.

ID Itemset Occurrences
1 beer, toothpaste, scissor, hanger 23
2 beer, toothpaste 2
3 beer, toothpaste, scissor 8
4 scissor, hanger 5
5 toothpaste 2
6 toothpaste, scissor, hanger 2
7 beer,scissor, hanger 3
8 beer,toothpaste, hanger 1

TABLE V: Perturbed D′p to defend against the attribute linkage
attack

Definition 2 (Maximal Itemset): A maximal itemset of DI is
an itemset S ∈ DI that is not a subset of any other itemset in
DI .
For example, in Table I, the only maximal itemset is {beer,
toothpaste, scissor, hanger}. The above result implies a
powerful defense methodology: For each maximal itemset
S ∈ DI , if one can artificially generate records for all missing
boundary itemsets, no attribute linkage attack can happen
in the generated dataset. We will use this idea to derive
our defense methodology in Section V. Going back to our
example, Table V is an example dataset wherein every itemset
is free from the attribute linkage attack. Records 6-8 are the
artificial records which are added for the only maximal itemset
{beer, toothpaste, scissor, hanger}. Specifically, each artificial
record contains a missing boundary itemset in the original
dataset. One can check that with the artificial record which
contains the itemset {toothpaste, scissor, hanger}, Eve cannot
uniquely identify Alice’s record, and deduce that Alice bought
beer anymore. We will discuss the detail of our proposed
methodology in Section V, which defends against the attribute
linkage attack in DP settings.

III. PRELIMINARIES

In this section, we first give a formal definition of the set-
valued dataset, then we introduce various terms to formalize
differential privacy. Note that in this paper, we will use the
term “item” and “attribute” interchangeably because each item
can be viewed as a binary attribute, i.e., an attribute with range
{0, 1}.

A. Set-Valued Dataset

Set-valued data are commonly used to represent data, e.g.,
shopping lists, visited web-pages and click streams. Let I =
{I1, I2, ..., In} be the item universe with size n, and an itemset
S ⊆ I is a subset of I, with |S.items| being the number of
items in S and |S| being the number of occurrences of S in the
dataset. For example, in Table I(a), each item is a commodity
in a supermarket and I = {beer, toothpaste, scissor, hanger}.
An itemset S could be {beer, toothpaste, scissor, hanger} with
|S.items| = 4 and |S| = 20. A set-valued dataset D can be
represented using a histogram, in which each record r stores
a unique itemset S with its number of occurrences |S| in the
dataset, i.e., D = {(S, |S|)}. We use DI to represent the set
of itemsets in D, that is, DI = {S : (S, |S|) ∈ D}.
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B. Differential Privacy

DP [34] is a mathematical framework designed to protect
users’ privacy. The main goal of DP is to guarantee that
whether or not a person participated in the dataset will not
dramatically increase the risk of individual information being
leaked. In DP, the parameter ε, which is the privacy budget, is
determined in advance to decide the level of privacy and noise
introduced to the dataset D. Note that in the set-valued dataset,
one’s participation will influence the number of occurrences of
a specific itemset. For example, removing Alice’s participation
from Table I(a) will reduce the number of occurrences of the
itemset {beer, toothpaste, scissor, hanger} by 1. Specifically,
the formal definition of DP is as follows.
Definition 3 (ε-differential privacy): A randomized algorithm
A provides ε-differential privacy if for any two neighboring
set-valued datasets D1 and D2 which only differ in one
occurrence of an itemset, and for any output Dp ⊆ Range(A),

Pr(A(D1) = Dp)

Pr(A(D2) = Dp)
≤ eε,

where the probability is taken over the randomness of A.
Generally speaking, two popular noise additive mechanisms

are widely used by DP algorithms: the Laplace mechanism
and the Exponential mechanism [8]. Specifically, the key idea
of the Laplace mechanism, which is used in our paper, is
to generate a noisy answer x = Lap(µ, b) from the Laplace
distribution, where b is the scaling parameter, and µ is the
true query answer. In particular, b = ∆f/ε, in which ∆f is
the global sensitivity measuring the impact of changing at
most one occurrence for one record in the original dataset.
In this paper, since we focus on counting queries, the global
sensitivity is 1.

IV. ATTRIBUTE LINKAGE ATTACK ON DP-PROCESSED
DATASETS

In this section, we first give a formal definition of the
APL, which adversaries use to initiate the attribute linkage
attack. Then we give an analysis to show that the attack
can be initiated with a high probability when the traditional
DP algorithm is applied. Finally, we use two popular DP
algorithms with real-world datasets to give a case study, which
confirms the feasibility of the attack in the real world.

A. Attribute Privacy Leakage

We here formally define the attribute privacy leakage
(APL), which is used by adversaries to initiate the attribute
linkage attack. Roughly speaking, an APL Q is an itemset that
the adversary can use to uniquely identify a specific itemset
S in the dataset.
Definition 4 (APL): Given a dataset D, we say that Q ⊂ I is
an APL in D if

|{S | S ∈ DI and Q ⊂ S}| = 1,

where I is the item universe and DI is the set of itemsets in
D (see Table II).

By using the APL Q, an adversary can initiate the attribute
linkage attack and uniquely identify an itemset S in DI .
Specifically, S−Q is the leaked information that the adversary
could obtain. In our previous example, {toothpaste, scissor,
hanger} is an APL which helps the adversary to uniquely
identify the itemset {beer, toothpaste, scissor, hanger}, and
beer is the leaked information. Note that for a real-world
dataset, the size n of the item universe (See Table II) is usually
large. As a consequence, there are 2n − 1 itemsets which can
be APLs, and so it is computationally expensive to locate all
APLs exhaustively.

However, the topology-theoretic approach in Section II-C
shows that one only needs to check whether boundary itemsets
(See Definition 1) for all maximal itemsets (See Definition 2)
in a dataset are APLs or not so to defend against the attribute
linkage attack. Therefore, in the rest of the paper, unless we
state otherwise, all itemsets considered are maximal itemsets,
and all APLs considered are boundary itemsets which can
be used to uniquely identify those maximal itemsets. Such an
assertion also shows that we consider a highly damaging threat
model: The adversary can have the most prior knowledge,
which is the boundary itemset of the target maximal itemset.
The following section will formally analyze why the attribute
linkage attack is highly probable in DP settings when there
are correlations among items.

B. Attack Analysis

We first state the attack methodology, i.e., how the adversary
leverages the APL to initiate the attribute linkage attack. Then,
a discussion about the insufficient protection of standard DP
is given, when there are correlations among items. Finally, we
will analyze the probability of the attribute linkage attack in
DP settings. In this paper, we assume the adversary has the
following prior information in advance.

1) The victim’s itemset S is in DI .
2) The adversary knows an APL Q ⊂ S. Specifically, Q is

a boundary itemset in BS , and the adversary can use it
to uniquely identify S in DI .

However, the adversary cannot access the original dataset D
and cannot identify the victim’s itemset S in DI . Instead,
she can only access the DP-processed dataset Dp and wants
to check whether Q can be used to uniquely identify the
victim’s itemset S in DI

p, which is the set of itemsets in
Dp. If that is the case, it means that Q is an APL in Dp,
and the adversary can successfully deduce the victim’s private
information. Specifically, the attack methodology is described
as follows.
Attack methodology: After accessing the DP-processed
dataset Dp, the adversary first links her prior knowledge Q
with records in Dp. As as result, she locates a candidate
set G = {S′|S′ ∈ DI

p and Q ⊆ S′}. Then the attribute
linkage attack is successfully initiated if and only if G = {S},
which means that the victim’s itemset S is uniquely identified.
Going back to our example, if Eve knows in advance that
Q = {toothpaste, scissor, hanger} and accesses Dp shown
in Table Ib, Eve can locate the candidate set G = {{beer,
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toothpaste, scissor, hanger}}, which only contains Alice’s
itemset. In this case, the attribute linkage attack is successfully
initiated. On contrary, if Eve accesses the dataset D′p shown
in Table V, she will locate the candidate set G = {{beer,
toothpaste, scissor, hanger}, {toothpaste, scissor, hanger}}.
In this case, Eve cannot determine Alice’s itemset, and the
attribute linkage attack cannot be successfully initiated.

Note that the attribute linkage attack is also feasible in
the context of the interactive DP setting. Specifically, the
interactive setting and the non-interactive setting only differ
in formats of representing data. At the core, they apply the
same noise additive mechanism, e.g., the Laplace mechanism,
to achieve the same level of privacy guarantees. Here we
also state the attack methodology in the interactive setting.
Specifically, by constructing specific combinations of queries,
the adversary can leverage her prior knowledge to deduce
private information. Using our previous example, because the
number of itemsets in the itemset universe which contain
{toothpaste, scissor, hanger} is two, i.e., {toothpaste, scissor,
hanger} and {beer, toothpaste, scissor, hanger}, the adversary
can propose two queries:

• Q1: How many people purchased the itemset {toothpaste,
scissor, hanger} exactly?

• Q2: How many people purchased the itemset {beer,
toothpaste, scissor, hanger}?

Let the true answer of Q1 be x and Q2 be y in D. Given
a randomized DP algorithm A which outputs the perturbed
query result, one can derive that

Pr(Eve deduces beer) = Pr(A(Q1) = 0 and A(Q2) = r)

= exp(−ε|0− x|) · exp(−ε|r − y|)
= exp(−ε(x+ y − r)),

whereA(Q1) andA(Q2) are two noisy answers which provide
ε-differential privacy for Q1 and Q2. A(Q1) = 0 combined
with A(Q2) = r > 0 denotes that all customers who bought
the itemset {toothpaste, scissor, hanger} also bought beer,
which implies that Eve can successfully launch the attribute
linkage attack.
Insufficient protections under correlations: Continuing the
discussion in the interactive setting, we want to emphasize
that correlations among items can sharply decrease the privacy
guarantee of DP, and it is not feasible to rely on DP to defend
against the attribute linkage attack. Given two neighboring
datasets D1 and D2, which only differ in one occurrence of
an itemset, according to Definition 3, one can derive that

max
D1,D2

Pr(Eve deduces beer in D1)

Pr(Eve deduces beer in D2)

≤ exp(−ε(x+ y − r))
exp(−ε(x+ y − 1− r)))

= exp(ε),

However, suppose there are correlations among the items, for
example,

Pr(beer|toothpaste, scissor, hanger) = 0.9,

In this case, one can simply derive that y = 9x, and

max
D1,D2

Pr(Eve deduces beer in D1)

Pr(Eve deduces beer in D2)
≤ exp(ε(10x− r))

exp(ε(10(x− 1)− r))
= exp(10ε).

Such an amplification shows the sharp decrease of DP’s
privacy guarantee, and adding or deleting one record can have
significantly impacts on the probability of the attribute linkage
attack. The result implies insufficient protection against the
attribute linkage attack using standard DP. Similar dependency
issues for standard DP have also been proposed [14]. However,
the attribute linkage attack proposed in our paper is more
severe, and the reason is the following.
• It is not difficult to find out that the larger the correlation

is, the lower the privacy guarantee DP will provide.
Specifically, when the conditional probability equals to
γ ∈ (0, 1), the privacy guarantee reduces to exp( ε

1−γ ),
which is unacceptable.

• Such item correlations are common in the real world, e.g.,
shopping preferences and medical information. Moreover,
the number of possible correlations increases exponen-
tially as the number of items in the dataset increases,
and it is difficult to use some DP variants, e.g., dependent
differential privacy [14], to eliminate the attack.

Deriving the probability of attribute linkage attack: Re-
member that the first step for the adversary is to use the
prior knowledge Q to locate a candidate set G. We say Q
is an APL, and the attribute linkage attack is successfully
initiated if and only if the candidate set G = {S}, where
S is the victim’s itemset. Therefore, the probability of the
successful attribute linkage attack equals the probability that
the condition “G = {S}” holds in the DP-processed dataset
Dp. To derive the probability that the condition “G = {S}”
holds, we find that the condition can be further dissect into two
components, i.e., C1 : S ∈ DI

p and C2 : G′ ∩ DI
p = ∅ where

G′ = {S′|Q ⊆ S′ ⊆ I and S′ 6= S}. Specifically, C1 requires
that the victim’s itemset S should exist in the DP-processed
dataset Dp, such that the adversary can identify it using the
prior knowledge Q and make sure S ∈ G. C2 requires that
for other itemsets which can also be identified by the prior
knowledge Q, they should not exist in Dp to make sure that
the victim’s itemset S is uniquely identified. As a result, we
have

Pr(Successful Attribute Linkage Attack) = Pr(G = {S})
= Pr(C1C2).

Computing the above probability is non-trivial for different
DP algorithms. However, because DP algorithms need to
maintain a high data utility, the probability of a specific itemset
being added to Dp is positively related to its frequency in
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D. For example, the basic idea of the partitioning-based DP
algorithms [24] is first to partition the whole itemset space into
many sub-regions, then keep those regions with large numbers
of occurrences [19]. Sampling algorithms in DP [27], [25]
learn the item correlations from the original data distribution
first, then generate Dp from noisy joint distribution. Based on
this observation, one can assert that

Pr(Successful Attribute Linkage Attack) = Pr(C1C2)

∝ fD(S) ·
∏
S′∈G′

(1− fD(S′)),

where S is the victim’s itemset, fD(S) is the frequency of S
in the dataset D, and G′ = {S′|Q ⊆ S′ ⊆ I and S′ 6= S}.

In our attack, since Q is an APL for S in the original dataset
D, no other itemsets contain Q, and a strong correlation
exists between Q and S − Q. Using our previous exam-
ple, most customers choose to buy beer after they purchase
the itemset {toothpaste, scissor, hanger}. Such a correlation
increases fD(S) where S is the itemset {beer, toothpaste,
scissor, hanger}, while at the same time keeps fD(S′) as
low as possible. The consequence is that in Dp, there is
a high probability for the attacker to uniquely identify S.
Another way to understand the influence of correlations on
the probability of attribute linkage attack is that, since the
item correlation is an essential statistical property, which DP
algorithms try to preserve, the item correlation is likely to be
kept in Dp. However, the truth is that the existence of the
APL depends on the correlation of underlying items. As long
as the item correlation is well preserved, the existence of APLs
will also be well preserved. The consequence is that when the
adversary observes Dp, there is a high chance that the attack
can be successfully initiated. Next, we will use experiments
to demonstrate the high probability of the attack in the DP
setting.

C. Case Study

In this section, we use real-world datasets and two DP
algorithms, DiffPart [24] and PrivBayes [27], to demonstrate
the attribute linkage attack on DP-processed datasets. The
reason to choose these two algorithms is that they are popular
and representative: one is partitioning-based, and another
is sampling-based. We first give an overview of these two
algorithms, then we show the probability of the attack using
our designed experiments.
DiffPart: On startup, DiffPart requires a context-free taxon-
omy tree T to instruct the partitioning procedure, and Figure
1 is an example. Specifically, the tree is constructed with
four leaf nodes, each denoting a specific item Ik, k ≥ 1. We
map each item in the item universe {beer, toothpaste, scissor,
hanger} to I1, I2, I3 and I4 respectively. Besides those leaf
nodes, internal nodes of the tree are a set of their leaves.
For example, the internal node I{1,2,3,4} = {I1, I2, I3, I4}.
The parameter f controls the maximum degree of nodes. In
Figure 1, we let f = 2.

Note that a set of taxonomy tree nodes can generalize
records in a dataset. Specifically, for a record r : (S, |S|) in

I{1,2,3,4}

I{1,2}

I1 I2

I{3,4}

I3 I4

Fig. 1: Taxonomy tree T with f = 2

a dataset D (See Table II) and a set of tree nodes N , N
generalizes the record r if (1) ∀Ik ∈ S, ∃N ∈ N , Ik ∈ N , and
(2) ∀N ∈ N , N ∩ S 6= ∅. For example, the set of tree nodes
{I{1,2}, I{3,4}} can generalize a record which contains the
itemset {I1, I2, I3}. Given the idea of generalization, DiffPart
uses sets of tree nodes to create disjoint partitions of the
dataset D. Figure 2 is an example which processes the dataset
shown in Table Ia. In particular, each partition p is a rectangle
area, which contains a set of tree nodes p.cut (the left part
of the rectangle) and a set of records p.records which are
generalized by p.cut (the right part of the rectangle).

Specifically, DiffPart initiates a top-down partitioning pro-
cedure. It starts from creating an initial partition p in which
the set of nodes p.cut contains the single root node of the
taxonomy tree, i.e., I{1,2,3,4}. Because the root node is the
set of all items in the item universe, it can generalize all five
records from r1 to r5, and p.records stores all these records.
After that, DiffPart creates sub-partitions by (1) expanding
the root node (I{1,2,3,4}) with its child nodes ({I{1,2}} and
{I{3,4}}) in the tree, and (2) further generalizing records in
the initial partition. Such sub-partition generation procedures
will not stop until the set of tree nodes in newly generated
sub-partitions cannot be expanded. That is, in the end, each
generated sub-partition p will contain a set of nodes p.cut,
in which each node is a leaf node. In this case, the set of
nodes p.cut represents a specific itemset. One can check in
Figure 2 that each leaf partition contains a specific itemset,
e.g., {I1, I2, I3}.

Every time a partition p is generated, DiffPart first computes
the sum of occurrences for all records in p.records. After
that, a Laplace noise is added to the sum, and if the noisy
sum is larger than a threshold, the partition p will be kept
for further processing. Otherwise, the partition p will not be
processed anymore. Specifically, the threshold is controlled by
a user-specified parameter c1: the larger c1 is, the larger the
threshold will be. In other words, the parameter c1 controls the
degree to which partitions with small numbers of occurrences
of records will be filtered out. Note that in Figure 2, we only
draw the sub-partition which are kept during the procedure.
We did not show those sub-partitions which are filtered out
because of small numbers of occurrences. Finally, when a leaf
partition p is generated, the set of nodes p.cut represents a
specific itemset. DiffPart further computes its noisy number of
occurrences, and adds the itemset p.cut with its noisy number
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{I{1,2,3,4}} r1, r2, r3, r4, r5

{I{1,2}} r2, r3

{I1, I2} 2 {I2} 2

{I{3,4}} r5

{I3, I4} 5

{I{1,2}, I{3,4}} r1, r4

{I{1,2}, I3} r4

{I1, I2, I3} 8

{I{1,2}, I3, I4} r1

{I1, I2, I3, I4} 23

{I{1,2}, I4} ∅

Fig. 2: A possible partitioning process using DiffPart

of occurrences to the output dataset Dp.
PrivBayes: The idea of PrivBayes is different from DiffPart. It
aims to first derive an approximate distribution of items in the
dataset, then apply sampling methods to generate a synthetic
dataset Dp. The algorithm runs in three phases:

1) Construct a k-degree Bayesian network B over the items
in the dataset using ε1-DP methods.

2) Generate a set of conditional distributions of the original
dataset D using ε2-DP methods.

3) Compute the approximate joint distribution over the
original dataset D. Combined with the network B and
conditional distributions derived from the second step,
the algorithm samples itemsets from the derived distri-
bution to generate a synthetic dataset Dp.

Specifically, the choice of the parameter k is affected by
another parameter θ, which measures the usefulness of the
noisy distribution. One can check that both DiffPart and
PrivBayes are consistent with our analysis in Section IV-B that
the frequency of itemsets will influence the probability of the
attack. Specifically, in DiffPart, the number of occurrences of
a specific itemset S will influence the noisy sum in partitions
where S locates, and further influence the probability of
these partitions generating sub-partitions. For PrivBayes, the
number of occurrences will directly influence the conditional
distribution derived in the second step and further influence
the joint distribution. When a sampling method is applied, the
itemset with a more significant number of occurrences has
a larger probability of being sampled. Further, we will use
experiments to demonstrate how significant the probability of
the attack can be.
Experiment results: We perform experiments to show the
attribute linkage attack on DP-processed datasets. The real-
world datasets are MSNBC1 and NLTCS2. MSNBC is a public
dataset on the UCI machine learning repository, which con-
tains 989,818 records and 17 items, while NLTCS contains
17,721 records and 16 items. In NLTCS, there is only one
maximal itemset SN , which contains all 16 items. The same
property applies for MSNBC, and there is only one maximal
itemset SM which contains all 17 items. Moreover, the only
maximal itemsets in both datasets have APLs.

1https://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
2https://www.icpsr.umich.edu/web/NACDA/studies/9681/publications

We set SN and SM as the target, and in each dataset, we
choose an arbitrary APL for the target to investigate whether
the APL still exists in Dp. If that is the case, the attack suc-
ceeds. Specifically, we are interested in the probability that the
DP-processed dataset Dp has the APL for the target. For each
DP algorithm and each parameter setting, we generate 1,000
DP-processed datasets to compute the average probability of
having APLs for the target. Note that it is time-consuming for
PrivBayes to process large datasets (over 24 hours). Instead,
we use DiffPart to process the MSNBC dataset and PrivBayes
to process the NLTCS dataset separately.

Figure 3 and Figure 4 show that the probability of having
the APL for SM increases quickly, as we increase the number
of occurrences. The occurrence of 80 is sufficient for the
attacker to launch the attribute linkage attack on SM with
a probability of 0.92. Note that in the original dataset, the
number of occurrences of S is 13, which means that in the
real world, Eve can successfully launch the attribute linkage
attack on SM with a probability of at least 0.4. In Figure 3, one
can observe that a larger c1, which is a user-defined parameter
in DiffPart, results in a more significant probability of being
attacked. We vary c1 from 0.1 to 1 in this experiment.

Figure 4 shows the influence of privacy budget ε given
c1 = 1. As the privacy budget increases, the variance of
added noise becomes smaller, such that the utility improves at
the cost of weakening the privacy guarantee. One can check
that the probability of having the APL for SM increases as
a larger value of privacy budget is assigned. For example, if
one publishes the dataset with ε = 1.6, the target’s information
can be leaked with probability of at least 0.6 in the real world,
which is an unacceptable privacy leakage risk.

We further use PrivBayes and NLTCS to show the probabil-
ity of having APLs for SN . For the PrivBayes algorithm, the
parameter θ controls the degree in the constructed Bayesian
network N , and ε is the privacy budget. Figure 5 shows the
experimental results as we vary ε from 0.1 to 1. One can check
that as ε increases, the generated noisy distribution is closer to
the original distribution in D, which means that the existence
of the APL is more likely to be preserved. Moreover, a lower θ
will also incur a higher probability of the attack. In summary,
there are two important conclusions for the attribute linkage
attack in DP settings.

1) For traditional DP algorithms, users need to carefully
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Fig. 3: Probability of having APLs for SM with different c1
and the number of occurrences.
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Fig. 4: Probability of having APLs for SM with different ε
and the number of occurrences.

select the parameter to reduce the probability of being
attacked.

2) There is a privacy-utility dilemma: A larger ε means a
lower scale of noise, which can bring a better data utility.
However, in this section, one observes that a larger ε also
brings a higher probability of being attacked.

In the following section, we will propose our defense method-
ology and solution.

V. DEFENSE METHODOLOGY

In this section, we propose a variant of DP to address
the attribute linkage attack, which is called APL-Free ε-DP.
Further, we design an algorithm, APLKiller, which satisfies
the APL-Free ε-DP and is used to publish datasets securely.
Experiment results show that our algorithm provides a stronger
privacy guarantee and better data utility than traditional DP
algorithms.

A. APL-Free ε-DP

First, let us provide the definition of APL-Free ε-DP.
Definition 5: A randomized algorithm A satisfies APL-Free
ε-DP if A satisfies the following requirements:

1) For any Dp ∈ Range(A), there is no APL in Dp.
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Fig. 5: Probability of having APLs for SM with different θ
and ε.

2) For any two neighboring datasets D1 and D2 which
only differ in one occurrence of an itemset, and for any
possible output Dp ⊆ Range(A),

Pr(A(D1) = Dp)

Pr(A(D2) = Dp)
≤ exp(ε).

Compared with Definition 3, APL-Free ε-DP adds an ad-
ditional constraint: there should be no APLs in the output
dataset. Besides inheriting the privacy guarantee of standard
DP, the additional constraint also guarantees that the attacker
cannot launch the attribute linkage attack in the output dataset
Dp. Note that any sequence of computations that each provides
APL-Free ε-DP in isolation also provides APL-Free ε-DP.
Specifically, the following sequential composition theorem
holds.
Theorem 1 (Sequential Composition Theorem): Let Ai each
be a randomized algorithm that satisfies APL-Free εi-DP. A
sequence of Ai(D) over the dataset D provides APL-Free∑
i(εi)-DP.

In some cases where a sequence of computations are con-
ducted on disjoint datasets, the privacy budget ε only depends
on the worst guarantee of all computations. Specifically, the
following parallel composition theorem holds.
Theorem 2 (Parallel Composition Theorem): Let Ai each
be a randomized algorithm that satisfies APL-Free εi-DP. A
sequence of Ai(Di) over a set of disjoint datasets Di provides
APL-Free (max(εi))-DP.
We defer the detailed proof in Appendix-A and Appendix-B
for further reference.

B. APLKiller

In this section, we propose the algorithm APLKiller, which
is used for publishing datasets efficiently and accurately. Most
importantly, we prove that our algorithm satisfies the APL-
Free ε-DP, which provides a higher privacy guarantee.
Framework: One of the advantages of our algorithm
APLKiller over traditional DP algorithms is the elimination
of APLs. To achieve this goal, we use the topology-theoretic
approach (See Section II-C) to instruct the design of our
algorithm. Specifically, topology theory shows that for each
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maximal itemset in a dataset, all boundary itemsets should
also exist in the dataset to defend against the attribute linkage
attack. The above result implies that whenever a maximal
itemset S is added to Dp, it is critical to make sure the
existence of its boundary set BS in Dp. Based on the above
understanding, we designed the APLKiller, which contains two
procedures.
• Level Partitioning: The goal of this partitioning procedure

is to generate records that contain itemsets of given sizes.
• Boundary Adding: The goal of this adding procedure is

to add artificial records. These records contain boundary
itemsets for itemsets added by the partitioning procedure.

APLKiller generates the output dataset Dp in several rounds.
Specifically, a size i ∈ {1, ..., |I|} is given in each round, and
APLKiller first initiates the level partitioning procedure. The
partitioning procedure will generate records that contain item-
sets of the given size i (the number of items in the itemset).
After that, for each generated itemset S, APLKiller initiates
the boundary adding procedure to ensure the existence of the
boundary set BS in Dp. Such iteration ends when the size i
reaches 0. Since the boundary set for each itemset generated
by the partitioning procedure is well checked, according to
topology theory, there will be no APLs in Dp, and the attribute
linkage attack cannot be launched. Also, all of these operations
should be done in a differentially private manner to satisfy
APL-Free ε-DP.

Let i-itemset be an itemset which contains i items, and Di

be the part of a dataset D containing all i-itemset records
(See Table II). Algorithm 1 shows the pseudocode of the
overall framework of APLKiller. The core components are
LevelPart (Line 5) and the Boundary Adding (Line 8 to
Line 16): They correspond to the level partitioning procedure
and the boundary adding procedure, respectively. In each
round, LevelPart first initiates the level partitioning procedure
and takes the size i as well as Di as the input. As a result,
it returns D′i, which is the perturbed dataset containing i-
itemset records. After that, APLKiller adds records in D′i
to the output dataset Dp, and initiates the boundary adding
procedure. Specifically, APLKiller first aggregates boundary
itemsets for each i-itemset in D′i. Then it determines the noisy
number of occurrences of each boundary itemset to generate
artificial records. Finally, these artificial records are also added
to the output dataset Dp.

Note that the iteration follows the decreasing order of the
size i (Line 4), and the iteration ends when the size i = 0. The
output dataset Dp is the union of D′i for i ∈ {1, ..., |I|}, and
the set of records which contain those boundary itemsets. For
example, if the size of the item universe |I| = 10, APLKiller
will first call LevelPart to generate D′10, which contains 10-
itemset records. Then APLKiller aggregates boundary itemsets
for those 10-itemsets in D′10, determines their noisy number
of occurrences, and adds them to Dp with those records in
D′10. The iteration stops when i = 0, and APLKiller returns
Dp to users.

In the remaining part of this section, we first introduce the
framework of LevelPart, which is responsible for the parti-

tioning procedure. Then we introduce our boundary adding
procedure. Finally, we introduce the privacy budget allocation
scheme and give an analysis of APLKiller.

Algorithm 1 APLKiller
Input: D, parameter vectors F , C1, privacy budget ε
Output: perturbed dataset Dp

1: i← |I|
2: Initialize an empty set Dp and a vector of empty sets Q
3: Partition D into

⋃n
i=1Di //Di contains all i-itemsets

4: while i ≥ 1 do
5: D′i ← LevelPart(i,Di, Fi, Ci1, ε) //Generate D′i
6: Dp = Dp ∪DI′

i

7: for Sij ∈ DI′
i do

8: Qi = Qi ∪BSi
j

//Aggregate boundary itemsets for D′i
9: end for

10: for Sik ∈ Qi do
11: N i

k = 0
12: //Determine the noisy number of occurrences of boundary

itemsets
13: while N i

k ≤ 0 do
14: N i

k = NoisyCount(|Sik|, ε)
15: end while
16: Add record (Sik, N

i
k) to Dp.

17: end for
18: //Remove influences of Qi on generating D′i−1

19: Remove records which contains itemset Sik ∈ Qi from Di−1

20: i← i− 1
21: end while
22: return Dp

Level partitioning procedure. The algorithm LevelPart is
responsible for the level partitioning procedure, and its pseu-
docode is shown in Algorithm 2. Specifically, it takes the size
l, the dataset Dl, the privacy budget ε and several algorithm-
specific parameters as inputs. As a result, it returns a per-
turbed dataset D′l, which contains l-itemset records with noisy
numbers of occurrences. LevelPart shares a similar top-down
partitioning procedure with that of DiffPart (See Section IV-C).
However, LevelPart applies additional size constraints to prune
“illegal” partitions, which we will introduce later. The advan-
tage of the size-restricted partitioning procedure is to generate
records that contain itemsets of the given size.

LevelPart starts the partitioning procedure by initializing a
taxonomy tree and creating an initial partition p, in which the
set of nodes p.cut contains the single root node of the taxon-
omy tree (Line 1 and Line 2). Note that the related definitions,
e.g., the taxonomy tree, the partition and the generalization
operation, are the same as those used in DiffPart. One can
refer to Section IV-C for further information. Figure 6 is an
example: The topmost partition contains a single root node
I{1,2,3,4}, which generalizes all records r1 - r5.

In each round, LevelPart picks a partition p′ (Line 5), and
calls LevelSGP to generate a set of sub-partitions P (Line 6).
Specifically, if the generated sub-partition pi ∈ P is a leaf
partition (pi.cut represents a specific itemset), LevelPart will
first compute its noisy number of occurrences by applying the
Laplace mechanism (Line 8 to Line 10). After that, LevelPart
uses a threshold to determine whether the noisy number of
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occurrences is large enough (Line 11). If that is the case,
the itemset represented by pi.cut with the noisy number of
occurrences will be added to D′l (Line 12). Note that the
threshold is controlled by a user-specified parameter Cl1: The
threshold equals the multiplication of the standard deviation of
the Laplace noise and the parameter Cl1. In order to compute
the noisy number of occurrences and the standard deviation,
LevelPart needs to determine the privacy budget. We will
introduce the privacy budget allocation scheme later in this
section. On the other hand, if the generated sub-partition pi is
not a leaf partition, it will be preserved for further partitioning
(Line 15). An example is given in Figure 6. For the initial
partition p with p.cut = {I{1,2,3,4}}, it generates 3 sub-
partitions. One of its sub-partitions with cut I{1,2} further
generates two leaf partitions, which present itemsets {I1, I2}
and {I2} respectively.

Algorithm 2 LevelPart

Input: size l, dataset Dl, fan-out Fl, constant Cl1, and privacy budget
ε

Output: Perturbed dataset D′l
1: Initialize D′l and construct taxonomy tree T with Fl
2: Create Partition p which includes all records and store root of T

into p.cut. Let p.B = ε
2

and p.α = p.B
Par(p,l)

3: Add p to an empty queue Q
4: while Q 6= ∅ do
5: Dequeue p′ from Q
6: P ← LevelSGP(p′, T, l, Cl1) //Generate subpartitions of p′

7: for each pi ∈ P do
8: if pi is leaf partition then
9: //Determine the noisy occurrence of the itemset

10: Npi = NoisyCount(|pi|, ε2 + pi.B)

11: if Npi ≥
√
2

Cl
1

ε/2+pi.B
then

12: Add Npi copies of pi.cut to D′l
13: end if
14: else
15: Add pi to Q //Continue to generate subpatitions of pi
16: end if
17: end for
18: end while
19: return D′l

It is important to introduce LevelSGP, which is responsible
for the sub-partition generation given the size constraint. The
pseudocode is shown in Algorithm 3. Specifically, LevelSGP
first creates sub-partitions for the current partition p by (1)
randomly selecting one node from p.cut and expanding it,
and (2) generalizing records in p.records (Line 5). After
that, created sub-partitions with non-zero sums of occurrences
and those with zero sums are processed differently. For sub-
partitions with non-zero sums of occurrences, a Laplace noise
is added to the sum and the noisy sum is compared with a
user-defined threshold (Line 7 to Line 13). If the noisy sum
is larger than the threshold, the sub-partition will be kept for
further processing. Otherwise, the sub-partition with records
in it will be discarded. For sub-partitions with zero sums
of occurrences, a sampling method is applied to guarantee
the randomness of the algorithm. Specifically, Every time a
Laplace noise is generated and is larger than the user-defined

threshold, LevelSGP will randomly select an empty partition
and keep it for further processing (Line 16 to Line 21).

Algorithm 3 LevelSGP

Input: Partition p, taxonomy tree T , length l, constant Cl1
Output: Vector of sub-partitions V

1: Initialize empty vector V
2: if |p.cut| > l or |p.items| < l then
3: return V
4: end if
5: Randomly select u ∈ p.cut, expand and generate the set of non-

empty sub-partitions S in which |si.cut| ≤ l and |si.items| ≥ l
for si ∈ S.

6: Generalize records in p to sub-partitions in S
7: for si ∈ S do
8: Nsi = NoisyCount(|si|, p.α)
9: if Nsi ≥

√
2
Cl

1
p.α

then
10: si.B = p.B − p.α, si.α = si.B

Par(si,l)

11: Add si to V //The subpartition can be further processed
12: end if
13: end for
14: j = 1
15: //Select some empty subpartitions by random sampling
16: while j ≤ 2|p.items| do
17: if NoisyCount(0, p.α) ≥

√
2
Cl

1
p.α

then
18: Randomly generate an empty sub-partition s′j
19: if |s′j .cut| ≤ l and |s′j .items| ≥ l then
20: s′j .B = p.B − p.α, s′j .α =

s′j .B

Par(si,l)

21: Add s′j to V
22: end if
23: end if
24: end while
25: return V

Note that the goal of LevelSGP is to generate sub-partitions
given the size constraint, which is not supported in Diff-
Part. Consider Figure 2 as an example. DiffPart expands the
partition with cut {I3,4} to create sub-partitions with cuts
{I3}, {I4}, and {I3, I4}. However, if 1-itemsets are required,
one should remove the partition with cut {I3, I4}, because it
only contains 2-itemsets. In order to make LevelSGP generate
sub-partitions that meet the size constraint, in this paper, we
propose a novel pruning technique. Specifically, given the size
l, we find two situations in which a partition should be pruned.

1) |p.cut| > l.
2) |p.items| < l.

In the first situation, the number of nodes in p.cut is computed
and is used to compare with the size l. Since each node in
p.cut contributes to at least one item, if the total number of
nodes is more significant than l, the partition p will generate
at least (l + 1)-itemsets, and the partition should be filtered
out. For example, in Figure 6, the partition with the cut
{I{1,2}, I{3,4}} is pruned, because it will generate itemsets of
length at least 2. For the second situation, |p.items| is the sum
of sizes for all nodes in p.cut. For example, for the partition
p with the cut {I{1,2}, I{3,4}}, |p.items| = 4. If it is less than
l, the partition p can generate at most (l− 1)-itemsets, which
should also be pruned. By enforcing the size checking (Line 5
and Line 19), LevelSGP is guaranteed to only generate sub-
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Fig. 6: The generation of 1-itemsets using LevelPart

partitions containing l-itemsets. Finally, when a leaf partition
is generated, it will only contain one l-itemset.
Boundary adding procedure. The boundary adding proce-
dure is initiated by the algorithm APLKiller. When LevelPart
returns D′i (Line 5), APLKiller will first add records in D′i to
the output dataset Dp (Line 6). Then the boundary itemset
for each i-itemset in D′i is derived deterministically, and
APLKiller collects those boundary itemsets in Line 8, where
BSj

is the boundary set for the itemset Sj . For each collected
boundary itemset, APLKiller repeatedly generates a number
of occurrences with Laplace noise until it is positive (Line
13). After that, the boundary itemset with the noisy number
of occurrences is added to Dp to eliminate possible APLs in
Dp. Before APLKiller starts the next round to generate (i−1)-
itemsets, it first removes the the existence of each boundary
itemset Sik from Di−1 (Line 19). This is because they have
been processed, and they should not cause any influence in
generating (i− 1)-itemsets.
Privacy budget allocation and analysis. When initiating
the level partitioning procedure and the boundary adding
procedure, APLKiller allocates the privacy budget to calculate
the noisy sum for a specific sub-partition or calculate the noisy
number of occurrences of an itemset. Therefore, it is necessary
to show how the privacy budget is allocated.

First, we show the budget allocation scheme in the level
partitioning procedure. APLKiller calls LevelPart iteratively
to do level partitioning using Di as inputs. As every Di

is disjoint from each other, according to Theorem 2, one
can safely allocate the whole privacy budget ε each time
LevelPart is called. LevelPart first creates an initial partition
p, and assigns the whole budget ε to it (Line 2). Specifically,
p.B is the privacy budget for the sub-partition generation,
which is initially ε

2 . The remaining ε
2 budget will be finally

used to determine the noisy number of occurrences of the
generated itemset. Every time sub-partitions of a partition
p are generated, p.B will be reduced, and the residue will
be inherited by these generated sub-partitions. Note that p.α
represents the computed budget cost for the coming sub-
partition generation.

Specifically, every time LevelSGP is called to generate sub-
partitions of a partition p, it will use up p.α, and assign the
remaining (p.B − p.α) budgets to all generated sub-partitions
for further partitioning (Line 10 in LevelSGP). Since these
sub-partitions represent disjoint subsets of the original dataset
D, such a privacy budget allocation scheme also follows
the Theorem 2. Moreover, in Line 10 of LevelSGP, for all
generated sub-partitions si, si.α is computed which is the

budget cost for partition si to launch the next sub-partition
generation. Finally, in LevelPart, if LevelSGP returns a leaf
partition pi, the remaining budget for sub-partition generation
pi.B, plus the preserved half of the total privacy budget ε

2 ,
will be used for determining the noisy count of the itemset in
Dp (Line 10 in LevelPart).

In order to compute the privacy budget cost p.α for the
sub-partition generation, the idea is to first compute the
maximum number of partitioning operations for the partition p
to generate the leaf partition. After that, the algorithm allocates
a fraction of the unused partitioning budget according to the
maximum number of partitioning operations. For example, if
p.B = ε

3 and the maximum number is 4, then the budget
cost for the next sub-partition generation p.α is ε

12 . Note that
DiffPart also applies similar allocation scheme, and it has been
proved that the total budget cost for partitioning operations will
not exceed ε

2 , which is the initially allocated budget for the
sub-partition generation [24].

Therefore, calculating Par(p, l), which represents the max-
imum number of partitioning operations for the partition p
to generate leaf partitions and l-itemsets, is necessary for
deriving the allocated budget p.α. Once Par(p, l) is computed,
p.α can be simply computed as p.B

Par(p,l) . We first compute
Par(p, l) for partition p which contains single internal node
in p.cut, e.g., p.cut = {I{1,2,3,4}}. Based on the result, we
provide a solution to deal with more general cases, where a
partition may contain multiple leaf nodes and internal nodes,
e.g., p.cut = {I{1,2}, I{3,4}}.
Theorem 3: For a partition p, if p.cut contains single internal
node u and |u.items| = n, then given the fan-out parameter
f , for fk ≤ n

l ≤ f
k+1 and l > 0, k ≥ 0,

Par(p, l) = Par(u, l)

=

{
0, l = 0
n−1
f−1 +

∑k
i=1(l − d nfi e), otherwise

The detailed proof is deferred to Appendix-D for further
reference. We extend the above result to more general cases:
Compute Par(s, l) for a partition s which contains multiple
leaf nodes and internal nodes. Specifically, let p be its parent
partition, the number of leaf nodes in s be nls and the number
of internal nodes in s be nis. Here we give the computation of
Par(s, l).

Par(s, l) =

{
Par(p, l)− 1, nis > 1

Par(u, l − nls), nis = 1,
(1)

where u is the only internal node in partition s. Since for
the parent partition p, the generation of s takes one round,
when there are multiple internal nodes in the partition s, we
simply let Par(s, l) equal to Par(p, l) minus 1. However,
when there is only one internal node in s, because leaf
nodes will contribute to one item for constructing l itemsets,
and it will not increase the number of rounds of partitions,
we let Par(s, l) be Par(u, l − nls), which means that the
maximum number of partitioning operations only depends on
how we select (l − nls) items from the internal node u. To
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Dataset |D| |I.items| max(r)

MSNBC 989,818 17 17
Checkin-Foursquare 266,909 77 31

NLTCS 17,721 16 16

TABLE VI: Description of experimental datasets

better explain the mechanism, the following example is given.
Suppose p.cut = {I{1,2,3,4}} and s.cut = {I{1,2}, I{3,4}}.
In this case there are two internal nodes in s, and we let
Par(s, l) = Par(p, l) − 1. Suppose s′.cut = {I{1,2}, I3}, in
this case, there is one internal node and one leaf node in s′,
so we let Par(s, l) = Par(I{1,2}, l − 1).

For any partition s, one can first leverage Theorem 3
and Equation 1 to compute Par(s, l). Then one can de-
rive the budget cost for the next partitioning operation, i.e.,
s.α = s.B

Par(s,l) . Also, it has been shown that the total budget
cost for the level partitioning procedure will not exceed ε.
We further introduce the budget allocation scheme for the
boundary adding procedure. Specifically, for each boundary
itemset, we use the total budget ε to generate its noisy number
of occurrences (Line 14 in APLKiller). Note that such an
allocation scheme also follows the Theorem 2. The reason is
that (1) each boundary itemset is disjoint from each other, and
(2) because APLKiller removes each boundary itemset from
the dataset (Line 19), the boundary itemset is also disjoint
from those itemsets in Di, which are processed by the level
partitioning procedure. Therefore, it is appropriate to allocate
the total budget ε to each boundary itemset.

After introducing the algorithm design as well as the al-
location scheme for the privacy budget used in partitioning
operations, we state that Lemma 1 holds.
Lemma 1: LevelPart satisfies ε-DP.

Next, we will analyze APLKiller regarding its privacy
guarantees, data utility and time complexity.

C. Algorithm Analysis

In this section, we give the analysis of APLKiller. We first
prove that APLKiller satisfies APL-Free ε-DP, then we give
an analysis of the time complexity of our algorithm.
Theorem 4: APLKiller satisfies APL-Free ε-DP.
The detailed proof is in the Appendix-C. Moreover, for the
time complexity analysis, we have the following result, and
the proof is shown in Appendix-E.
Lemma 2: The time complexity of DiffPart is O(mn), where
m is the number of records in the dataset D, and n is the
number of items in the item universe.

The time complexity of APLKiller is attractive, compared
with other algorithms which have exponential time complexity,
e.g., PrivBayes. In the next section, we will use the experiment
to show that our algorithm also enjoys better data utility than
DiffPart and PrivBayes.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our algorithm by comparing
with traditional DP algorithms in terms of the execution time,
privacy level and data utility. Three datasets are used, and
detailed information about these datasets is shown in Table VI,
where |D| is the number of records in the dataset, |I.items|

is the size of item universe, and max(r) is the maximum
number of items in one record. In the rest of this section,
we (1) compare the execution time of our algorithm with that
of DiffPart and PrivBayes algorithms, (2) perform the privacy
analysis to show the privacy guarantee which our algorithm
can provide, and (3) show that our algorithm provides better
data utility. All experiments were conducted on an Intel Core
i5 2.4 GHz PC with 8GM RAM.

A. Efficiency Analysis

In this subsection, we report the time cost of publishing
datasets using APLKiller, DiffPart, and PrivBayes. The result
is shown in Figure 7. For each dataset and each algorithm, we
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Fig. 7: Execution time of APLKiller, DiffPart and PrivBayes

run the algorithm 1,000 times to publish the corresponding
dataset and compute the average of the execution time. Note
that the algorithm PrivBayes cannot handle large datasets
efficiently. Specifically, for Checkin and MSNBC datasets, the
execution time for the PrivBayes algorithm is over 24 hours.
Therefore, the efficiency of the algorithm PrivBayes is the
worst. For the privacy analysis (Section VI-B) and the utility
analysis (Section VI-C), we will not apply PrivBayes on the
Checkin dataset and the MSNBC dataset because of its low
efficiency.

One can check that our algorithm APLKiller outperforms
DiffPart in efficiency. Specifically, the execution time of
APLKiller is reduced by 27.04% on average, compared with
that of DiffPart. For some datasets, e.g., the Checkin dataset,
the execution time of APLKiller can even be reduced by nearly
50%. The main reason for the speedup is that APLKiller
prunes unnecessary partitions, which speeds up the generation
of sub-partitions (See Section V-B). As a result, users can use
our algorithm to publish the dataset efficiently.

B. Privacy Guarantee Analysis

In Section IV, we have used DiffPart and PrivBayes to show
the possible attribute linkage attack. In this section, we extend
our experiments and add APLKiller to make the comparison.
Specifically, the only maximal itemset in the NLTCS dataset is
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denoted as SN , and the only maximal itemset in the MSNBC
dataset is denoted as SM . We set SN and SM as the target and
check the probability of having APLs for these two targets in
the generated dataset.

Figure 8 shows the comparison result between DiffPart and
APLKiller. We used the MSNBC dataset to do the experiment.
The value of each point is derived from the average of the
analysis result among 1,000 generated datasets. In Figure 8(a),
we change the privacy budget ε, and we further change
the parameter c1 in Figure 8(b). For the record, although
APLKiller allows one to set different parameters at different
levels, in the following analysis, unless we state otherwise,
the same parameter for each level is used to compare with
DiffPart. For example, c1 = 1 means that we set Ci1 = 1 for
each size i in APLKiller. By using our algorithm APLKiller,
one can check that for each parameter setting, there is no
single APL in the generated dataset, which means that the
target itemset is guaranteed to be protected from the attribute
linkage attack.
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Fig. 8: Privacy comparison using DiffPart and MSNBC

We also compare APLKiller with PrivBayes using the
NLTCS dataset, and the result is shown in Figure 9. Note
that by using PrivBayes, the probability of having APLs for
the target itemset varies little as one sets different ε (97.2%
- 98.6%). Therefore, lines drawn from PrivBayes overlap
heavily. However, by using APLKiller, no matter how the

parameter is set, there is no APL in the generated dataset,
and so the probability of having APLs is always 0.

From the above analysis, one can see that our algorithm
provides a stronger guarantee. We will further analyze the
data utility and show that our algorithm preserves a good data
utility.
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Fig. 9: Privacy comparison using PrivBayes and NLTCS

C. Data Utility Analysis

First, it is important to introduce the utility metric. Since
we focus on counting queries, for each experiment, 50,000
counting queries are generated. Moreover, the 50,000 queries
are divided into two groups: half for querying existing itemsets
in the original dataset and half for querying random itemsets.
By querying existing itemsets, we examine the real data
utility, and by querying random itemsets, we simulate the
real-world use cases. Given a query Q, for example, “How
many people bought the beer?”, the relative error [24] for
Q is computed as |Q(D′)−Q(D)|

max(Q(D),s) , where Q(D′) is the query
result on the generated dataset, Q(D) is the query result on
the original dataset, and s is the sanity bound in order to
weaken the influence of queries with extremely small counting
answers [24]. All three datasets mentioned in Table VI are
used to do the utility analysis, and we set the sanity bound to
0.01% of the size of the original dataset.

Figure 10 shows the comparison result on MSNBC and
Checkin datasets. For these two datasets, we only use them
to compare APLKiller with DiffPart. We do not consider
PrivBayes because MSNBC and Checkin datasets are two rel-
atively large datasets, and it is time-consuming for PrivBayes
to generate perturbed datasets when the input dataset is large.
Experiment results show that it will take more than 24 hours
for PrivBayes to generate a perturbed dataset, which is in-
feasible for experiments and real-world use case. In order to
compare APLKiller with PrivBayes, we use NLTCS, which is
a small dataset, to do the experiment.

Figure 10a shows the utility result on MSNBC dataset, with
c2 = 1, f = 2 and ε ranging from 0.25 to 2. We also set c1 ∈
[0.1, 0.5, 1]. Each point is the average computed by generating
50,000 queries in terms of 1,000 rounds. As c1 is decreased
from 1.0 to 0.1, one can see that the data utility is increased,
and the data utility of APLKiller is better than that of DiffPart
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Fig. 10: Utility comparison using MSNBC and Checkin
datasets

when c1 = 0.1. Experiment results show that the relative error
for APLKiller is reduced by 3.6% on average, as ε varies.
Figure 10b shows similar results when the Checkin dataset is
used, and the relative error is only 2.5% to 4.9%.

Moreover, one can observe the utility-privacy dilemma:
Although a smaller ε can decrease the probability of having
the APL in Figure 8, it brings a more significant relative query
error shown in Figure 10, which implies that the data utility
becomes worse. However, APLKiller eliminates this dilemma:
No matter how the privacy parameter ε is set, the probability
of having the APL is guaranteed to be always zero. Therefore,
our algorithm lets publishers publish the dataset with good data
utility while comprehensively defending against the attribute
linkage attack.

In Figure 11, we further show the utility result and consider
PrivBayes. We use the NLTCS dataset to do the experiment.
For DiffPart and APLKiller, we set c1 to 0.1 and 0.5;
For PrivBayes, we follow the experiment evaluation instruc-
tion [27] and set θ to 4 and 5 separately. One can see that
the data utility of APLKiller is better than that of DiffPart
and PrivBayes. In detail, for different ε settings, our algorithm
APLKiller reduces the relative error by 6.8% compared with
that of DiffPart, and 49.1% compared with that of PrivBayes.
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VII. CONCLUSIONS

In this paper, we show that the attribute linkage attack is a
severe problem under DP settings. In order to eliminate this
attack, we enhance standard DP and propose the APL-Free
ε-DP. We further propose a top-down partitioning algorithm
APLKiller, which is based on a topology-theoretic approach
to defend against the attack in DP settings. Compared with
traditional DP algorithms, our algorithm has a lower execution
time, which is efficient for publishing the dataset. Moreover,
our algorithm eliminates the issue of the attribute linkage
attack and achieves a higher level of privacy guarantees.
Finally, better data utility is achieved.

How to set the parameter for our algorithm APLKiller
to publish the dataset is our ongoing research. Specifically,
APLKiller supports customized parameters for generating
itemsets of different sizes, and exploring the appropriate
parameter setting given a specific dataset can help users to get
better data utility. Moreover, extending the scope of attacks
and proposing more stringent DP variants are also exciting
directions to build a more general privacy framework based
on APL-Free ε-DP and APLKiller. For example, investigating
how to address the probabilistic attribute linkage attack is a
challenging while valuable topic.
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APPENDIX

In the appendix, we list the proof for theorems and lemmas
which were proposed in previous sections.

A. Proof for Sequential Sequential Composition Theorem

Proof: For any sequence of computations Ai(D) = Di,
i ∈ {1, ..., k}, the probability of getting the output is∏k
i=1 Pr[Mi(D) = Di]. By applying the definition of APL-

Free ε-DP, and for any two neighboring datasets D and D′,
we have

k∏
i=1

Pr[Mi(D) = Di]

≤ (

k∏
i=1

Pr[Mi(D
′) = Di] · exp(εi|D −D′|))

=

k∏
i=1

Pr[Mi(D
′) = Di] · exp(

k∑
i=1

εi)

Further, according to the definition of APL-Free ε-DP and the
result derived from the topology theory, there will be no APLs
in any output dataset Di. Proof completes.

B. Proof for Parallel Sequential Composition Theorem

Proof: Consider two neighboring datasets D, D′, and a general
partitioning procedure which partitions D into

⋃k
i=1Di, and

partitions D′ into
⋃k
i=1D

′
i. According to the definition of

the neighboring dataset, one can derive that there exists a
single j ∈ {1, ..., k}, such that |Dj − D′j | = 1. Then for
any sequence of computations Ai(Di), each of which outputs
Dout
i ∈ Range(Ai), the probability of getting the sequence

of outputs is
∏k
i=1 Pr[Ai(Di) = Dout

i ]. By applying the
definition of APL-Free ε-DP, we have

k∏
i=1

Pr[Ai(Di) = Dout
i ]

≤ (

k∏
i=1

Pr[Ai(D′i) = Dout′

i ] · exp(εi × |Di −D′i|))

≤
k∏
i=1

Pr[Ai(D′i) = Dout′

i ] · exp(max
i

εi)

Further, according to the definition of APL-Free ε-DP and the
result derived from the topology theory, there will be no APLs
in any output Dout

i . Proof completes.
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C. Proof for APLKiller satisfying APL-Free ε-DP

Proof: To prove that APLKiller satisfies APL-Free ε-DP,
we need to prove that it satisfies those two constraints in
Definition 5. Because our handling of boundary itemsets is
inspired by the topology-theoretic approach, which has been
proved that there will be no APLs in the generated dataset,
the first constraint is satisfied.

The only thing we need to prove is that APLKiller sat-
isfies the second constraint. It can be checked that only
two components of APLKiller use the original dataset D.
The first component is LevelPart, which uses Di to generate
D′i in Line 6. The second component is adding boundary
itemsets in Line 14. Note that Qi and Di−1 are generated in
a deterministic way once D′i is generated, so it can be derived
that

Pr[Dp] = Pr[D′1D
′
2...D

′
nQ1...Qn]

=

1∏
i=n

(Pr[L(Di) = D′i]Pr[Di−1, Qi|D′i]
∏

Si
k∈Qi

Pr[|Sik| = N i
k])

=

1∏
i=n

(Pr[L(Di) = D′i] ·
∏

Si
k∈Qi

Pr[|Sik| = N i
k]),

where L represents our algorithm APLKiller, |Sik| is the true
occurrence of kth boundary itemset in Qi, and N i

k is the noisy
occurrence.

Because all Di and Sik are disjoint, according to Theorem 2,
the total privacy budget ε can be assigned to the generation of
each D′i and Sik. Since D′i is generated by LevelPart, according
to Lemma 1, it satisfies the second constraint. For each Sik,
APLKiller directly generates the positive Laplace noise using
privacy budget ε. Therefore, the APLKiller satisfies APL-Free
ε-DP, and the proof is completed.

D. Proof for Theorem 3

Proof: In [24], it has been shown that if there is no pruning
operation, the maximum number of partitioning operations to
reach the leaf partition is n−1

f−1 , which is the number of internal
nodes in the taxonomy tree T rooted at u. Now given pruning
operations, one can simply derive that Par(u, l) ≤ n−1

f−1 .
It is not difficult to show that the number of partitioning
operations equals the number of internal nodes visited during
the aggregation of items from the bottom of the taxonomy tree
to the top. To illustrate this fact, we give an example shown
in Figure 12.

Let the level of leaf nodes in T be 0. There are two cases
to consider. In level i > 0,

1) for a l-itemset, if l ≤ d nfi e, which is maximum number
of nodes in level i, it will visit at most l nodes and leave
d nfj e− l number of nodes unvisited at each level j < i.

2) for a l-itemset, if l ≥ d nfi e, it will visit at most d nfj e
nodes at each level j ≥ i.

I{1,2,3,4}

I{1,2}

I1 I2

I{3,4}

I3 I4

Fig. 12: Counting the number of partitioning operations needed
for generating the itemset {1,3} in T . First, from the level of
leaf nodes, locate I1 and I3, then aggregate them to nodes in
the upper level. The final number of partitioning operations
equals the number of internal nodes traversed during the
aggregation, which is 3.

Consider l ∈ [ n
fk+1 ,

n
fk ). For level j ≥ k+ 1, all nodes can be

visited. For level j ≤ k, it will leave at least d nfj e − l nodes
unvisited. So

Par(u, l) ≤ n− 1

f − 1
−

k∑
j=1

(d n
f j
e − l),

and the proof is completed.

E. Proof for the time complexity

Proof: In each round of APLKiller, The main computational
cost comes from Line 5, where LevelPart is called to generate
D′i, given the length i.

Now let us prove the time complexity of LevelPart. Similar
to the proof for DiffPart: For each partitioning operation,
the main computational cost comes from the distribution of
records from a partition to its sub-partitions, and the time com-
plexity is O(|Di|). Since the maximum number of partitioning
operations, according to Theorem 3, is bound by n−1

f−1 , the time
complexity of LevelPart for generating i-itemset is O(n|Di|).

Finally, for generating itemsets for all lengths, the time
complexity is O(n

∑n
i=1 |Di|), which is O(mn), and the proof

is completed.

17


